Splunk® Enterprise

Search Manual

Download manual as PDF

Download topic as PDF

About advanced statistics

The previous section shows you how to calculate basic statistics using stats, eval, and how to create sparkline charts.

In this section we discuss how to detect anomalies in your data. This could include finding outliers to identify anomalies or spikes in your data. You might want to remove outliers that unnecessarily skew your calculations or the way your charts plot the data. You can detect patterns in your data, grouping events based on how similar the events are to each other. If there are patterns and correlations to events that you monitor, you can use them to predict future activity. With this knowledge, you can proactively send alerts based on thresholds and perform "what-if" analyses to compare various scenarios. All of this and more is possible with advanced statistics.

See also

Use the stats command and functions

Use stats with eval expressions and functions

Add sparklines to report tables

PREVIOUS
Add sparklines to search results
  NEXT
Commands for advanced statistics

This documentation applies to the following versions of Splunk® Enterprise: 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 6.3.7, 6.3.8, 6.3.9, 6.3.10, 6.3.11, 6.4.0, 6.4.1, 6.4.2, 6.4.3, 6.4.4, 6.4.5, 6.4.6, 6.4.7, 6.4.8, 6.5.0, 6.5.1, 6.5.1612 (Splunk Cloud only), 6.5.2, 6.5.3, 6.5.4, 6.5.5, 6.6.0, 6.6.1, 6.6.2, 6.6.3


Was this documentation topic helpful?

Enter your email address, and someone from the documentation team will respond to you:

Please provide your comments here. Ask a question or make a suggestion.

You must be logged into splunk.com in order to post comments. Log in now.

Please try to keep this discussion focused on the content covered in this documentation topic. If you have a more general question about Splunk functionality or are experiencing a difficulty with Splunk, consider posting a question to Splunkbase Answers.

0 out of 1000 Characters