splunk> Search command cheatsheet

Miscellaneous

The iplocation command in this case will never be run on remote peers. All events from FOO BAR | localop | iplocation
remote peers from the initial search for the terms FOO and BAR will be forwarded to
the search head where the iplocation command will be run.

Administrative

View information in the "audit" index. index=audit | audit

Crawl root and home directories and add all possible inputs found (adds configuration | crawl root="/;/Users/" | input add
information to "inputs.conf").

Display a chart with the span size of 1 day. | dbinspect index=_internal span=1d

Return the values of "host" for events in the "_internal" index. | metadata type=hosts index=_internal

Return typeahead information for sources in the "_internal" index. | typeahead prefix=source count=10 index=_internal
Alerting

Send search results to the specified email. ... | sendemail to="elvis@splunk.com"
Fields
add

Save the running total of "count" in a field called "total_count". ... | accum count AS total_count

Add information about the search to each event. ... |addinfo

Search for "404" events and append the fields in each event to the previous search ... | appendcols [search 404]

results.

For each event where 'count' exists, compute the difference between count and its delta count AS countdiff

previous value and store the result in 'countdiff'.

Extracts out values like "7/01", putting them into the "monthday" attribute.

erex monthday examples="7/01"

Set velocity to distance / time.

eval velocity=distance/time

Extract field/value pairs and reload field extraction settings from disk. ... | extract reload=true

convert

filter

modify

Extract field/value pairs that are delimited by "|;", and values of fields that are delimited
by "=:".

Add location information (based on IP address).
Extract values from "eventtype.form" if the file exists.
Extract the "COMMAND" field when it occurs in rows that contain "splunkd".

Set RANGE to "green" if the date_second is between 1-30; "blue", if between 31-39;
"red", if between 40-59; and "gray", if no range matches (e.g. "0").

Calculate the relevancy of the search and sort the results in descending order.

Extract "from" and "to" fields using regular expressions. If a raw event contains "From:
Susan To: Bob", then from=Susan and to=Bob.

Add the field: "combolP". Values of "combolP" = ""sourcelP" + "/" + "destIP"".

Extract field/value pairs from XML formatted data. "xmlkv" automatically extracts
values between XML tags.

Convert every field value to a number value except for values in the field "foo" (use the
"none" argument to specify fields to ignore).

Change all memory values in the "virt" field to Kilobytes.

Change the sendmail syslog duration format (D+HH:MM:SS) to seconds. For example,
if "delay="00:10:15"", the resulting value will be "delay="615"".

Convert values of the "duration” field into number value by removing string values in
the field value. For example, if "duration="212 sec"", the resulting value will be
"duration="212"".

Separate the value of "foo" into multiple values.

For sendmail events, combine the values of the senders field into a single value; then,
display the top 10 values.

Keep only the "host" and "ip" fields, and display them in the order: "host", "ip".

Remove the "host" and "ip" fields.

extract pairdelim="|;", kvdelim="=:

, auto=f

| iplocation
| kvform field=eventtype
| multikv fields COMMAND filter splunkd

... | rangemap field=date_second green=1-30 blue=31-39 red=40-59
default=gray

disk error | relevancy | sort -relevancy

| rex field=_raw "From: (?<from>.*) To: (2<to>.*)"

strcat sourceIP "/" destIP comboIP

| xmlkv

| convert auto(*) none(foo)

convert memk(virt)

| convert dur2sec(delay)

| convert rmunit(duration)

| makemv delim=":" allowempty=t foo

eventtype="sendmail" | nomv senders | top senders

| fields host, ip

| fields - host, ip

Build a time series chart of web events by host and fill all empty fields with NULL.
Rename the "_ip" field as "IPAddress".

Change any host value that ends with "localhost" to "localhost".

sourcetype="web" | timechart count by host | fillnull value=NULL
| rename _ip as IPAddress

| replace *localhost with localhost in host

read
There is a lookup table specified in a stanza name 'usertogroup' in transform.conf. This | lookup usertogroup user as local_user OUTPUT group as user_group
lookup table contains (at least) two fields, 'user' and 'group'. For each event, we look
up the value of the field 'local_user' in the table and for any entries that matches, the
value of the 'group’ field in the lookup table will be written to the field 'user_group' in
the event.
Formatting
Show a summary of up to 5 lines for each search result. |abstract maxlines=5
Compare the "ip" values of the first and third search results. | diff posl=1 pos2=3 attribute=ip
Highlight the terms "login" and "logout". | highlight login,logout
Displays an different icon for each eventtype. | iconify eventtype
Output the "_raw" field of your current search into "_xml". | outputtext
Anonymize the current search results. | scrub
Un-escape all XML characters. | xmlunescape
Index
add
Add each source found by crawl in the default index with automatic source crawl | input add
classification (sourcetyping)
delete
Delete events from the "imap" index that contain the word "invalid" index=imap invalid | delete
summary

Put "download" events into an index named "downloadcount".

Find overlapping events in "summary".

eventtypetag="download" | collect index=downloadcount

index=summary | overlap

Compute the necessary information to later do 'chart avg(foo) by bar' on summary sichart avg(foo) by bar

indexed results.

Compute the necessary information to later do 'rare foo bar' on summary indexed ... | sirare foo bar
results.

Compute the necessary information to later do 'stats avg(foo) by bar' on summary
indexed results

sistats avg(foo) by bar

Compute the necessary information to later do 'timechart avg(foo) by bar' on summary ... | sitimechart avg(foo) by bar
indexed results.

Compute the necessary information to later do 'top foo bar' on summary indexed sitop foo bar

results.
Reporting
Calculate the sums of the numeric fields of each result, and put the sums in the field | addtotals fieldname=sum
"sum".
Analyze the numerical fields to predict the value of "is_activated". ... | af classfield=is_activated

Return events with uncommon values. anomalousvalue action=filter pthresh=0.02

Return results associated with each other (that have at least 3 references to each
other).

associate supcnt=3

For each event, copy the 2nd, 3rd, 4th, and 5th previous values of the 'count' field into
the respective fields 'count_p2', 'count_p3', 'count_p4', and 'count_p5'.

autoregress count p=2-5

Bucket search results into 10 bins, and return the count of raw events for each bucket. bucket size bins=10 | stats count(_raw) by size

Return the average "thruput" of each "host" for each 5 minute time span. bucket _time span=5m | stats avg(thruput) by _time host

Return the average (mean) "size" for each distinct "host". chart avg(size) by host

Return the the maximum "delay" by "size", where "size" is broken down into a chart max(delay) by size bins=10

maximum of 10 equal sized buckets.

Return the ratio of the average (mean) "size" to the maximum "delay" for each distinct ... | chart eval(avg(size)/max(delay)) by host user
"host" and "user" pair.

Return max(delay) for each value of foo split by the value of bar. ... | chart max(delay) over foo by bar

Return max(delay) for each value of foo. ... | chart max(delay) over foo

Build a contingency table of "datafields" from all events. contingency datafieldl datafield2 maxrows=5 maxcols=5 usetotal=F

Calculate the co-occurrence correlation between all fields. correlate type=cocur

Return the number of events in the '_internal' index. | eventcount index=_internal

Results

Compute the overall average duration and add 'avgdur' as a new field to each event
where the 'duration’ field exists

Make "_time" continuous with a span of 10 minutes.
Remove all outlying numerical values.
Return the least common values of the "url" field.

Remove duplicates of results with the same "host" value and return the total count of
the remaining results.

Return the average for each hour, of any unique field that ends with the string "lay" (for
example, delay, xdelay, relay, etc).

Search the access logs, and return the number of hits from the top 100 values of
"referer_domain".

For each event, add a count field that represent the number of event seen so far
(including that event). i.e., 1 for the first event, 2 for the second, 3, 4 ... and so on

Graph the average "thruput" of hosts over time.

Create a timechart of average "cpu_seconds" by "host", and remove data (outlying
values) that may distort the timechart's axis.

Calculate the average value of "CPU" each minute for each "host".
Create a timechart of the count of from "web" sources by "host"

Compute the product of the average "CPU" and average "MEM" each minute for each
"host"

Return the 20 most common values of the "url" field.

Computes a 5 event simple moving average for field 'foo' and write to new field
'smoothed_foo'

also computes N=10 exponential moving average for field 'bar' and write to field
‘emat0(par)'.

Reformat the search results.

Reformat the search results.

eventstats avg(duration) as avgdur

makecontinuous _time span=10m
outlier
rare url

stats dc(host)

stats avg(*lay) BY date_hour

sourcetype=access_combined | top 1imit=100 referer_domain | stats
sum(count)

streamstats count

timechart span=5m avg(thruput) by host

timechart avg(cpu_seconds) by host | outlier action=tf

timechart span=1m avg(CPU) by host
timechart count by host

timechart span=1m eval(avg(CPU) * avg(MEM)) by host

top 1limit=20 url

trendline sma5(foo) as smoothed_foo emal@(bar)

timechart avg(delay) by host | untable _time host avg_delay

xyseries delay host_type host

append

filter

generate

group

Append the current results with the tabular results of "fubar”.

Joins previous result set with results from 'search foo', on the id field.

Return only anomalous events.
Remove duplicates of results with the same host value.
Combine the values of "foo" with ":" delimiter.

Keep only search results whose "_raw" field contains IP addresses in the non-routable
class A (10.0.0.0/8).

Join results with itself on 'id' field.
For the current search, keep only unique results.

Return "physicjobs" events with a speed is greater than 100.

All daily time ranges from oct 25 till today
Loads the events that were generated by the search job with id=1233886270.2
Create new events for each value of multi-value field, "foo".

Run the "mysecurityquery" saved search.

Cluster events together, sort them by their "cluster_count" values, and then return the
20 largest clusters (in data size).

Group search results into 4 clusters based on the values of the "date_hour" and
"date_minute" fields.

Group search results that have the same "host" and "cookie", occur within 30 seconds
of each other, and do not have a pause greater than 5 seconds between each event
into a transaction.

Have Splunk automatically discover and apply event types to search results

Force Splunk to apply event types that you have configured (Splunk Web automatically
does this when you view the "eventtype" field).

chart count by bar | append [search fubar | chart count by baz]

join id [search foo]

anomalies
dedup host

mvcombine delim=":" foo

regex _raw="(?<!\d)10.\d{1,3}\.\d{1,3}\.\d{1,3}(?!\d)"

selfjoin id

uniq

sourcetype=physicsobjs | where distance/time > 100

| gentimes start=10/25/07

| loadjob 1233886270.2 events=t

mvexpand foo

| savedsearch mysecurityquery

cluster t=0.9 showcount=true | sort - cluster_count | head 20

kmeans k=4 date_hour date_minute

transaction host cookie maxspan=30s maxpause=5s

typelearner

typer

order

Return the first 20 results.
Reverse the order of a result set.

Sort results by "ip" value in ascending order and then by "url" value in descending
order.

Return the last 20 results (in reverse order).

head 20

reverse

| sort ip, -url

tail 20

read
Display events from the file "messages.1" as if the events were indexed in Splunk. | file /var/log/messages.1
Read in results from the CSV file: "$SPLUNK_HOME/var/run/splunk/all.csv", keep any | inputcsv all.csv | search error | outputcsv errors.csv
that contain the string "error", and save the results to the file: "$SPLUNK_HOME/var
/run/splunk/error.csv"
Read in "users.csv" lookup file (under $SPLUNK_HOME/etc/system/lookups or | inputlookup users.csv
$SPLUNK_HOME/etc/apps/*/lookups).

write
Output search results to the CSV file 'mysearch.csv'. | outputcsv mysearch
Write to "users.csv" lookup file (under $SPLUNK_HOME/etc/system/lookups or | outputlookup users.csv
$SPLUNK_HOME/etc/apps/*/lookups).

Search

external
Run the Python script "myscript" with arguments, myarg1 and myarg2; then, email the | script python myscript myargl myarg2 | sendemail
results. to=david@splunk.com

search
Keep only search results that have the specified "src" or "dst" values. src="10.9.165.*" OR dst="10.9.165.8"

subsearch

Get top 2 results and create a search from their host, source and sourcetype, resulting
in a single search result with a _query field: _query=(("host::mylaptop" AND
"source::syslog.log" AND "sourcetype::syslog") OR ("host::bobslaptop" AND

| head 2 | fields source, sourcetype, host | format

"source::bob-syslog.log" AND "sourcetype::syslog"))

Search the time range of each previous result for "failure". ... | localize maxpause=5m | map search="search failure
starttimeu=$starttime$ endtimeu=$endtime$"

Return values of "URL" that contain the string "404" or "303" but not both. | set diff [search 404 | fields url] [search 303 | fields url]

Copyright 2009, Splunk Inc. All rights reserved.

