Table of Contents

Introduction to the ML-SPL API..1
 About the ML-SPL API..1

Develop and package a custom algorithm..3
 Add a custom algorithm to the Machine Learning Toolkit overview..................3
 Register an algorithm in the Machine Learning Toolkit..................................3
 Write a Python algorithm class..4
 Custom algorithm template..6
 Running process and method calling conventions..9
 Using codecs...12
 Package an algorithm for Splunkbase..21

Custom algorithm examples..26
 Correlation Matrix example..26
 Agglomerative Clustering example...31
 Support Vector Regressor example...40
 Savitzky-Golay Filter example..43

Additional resources...47
 Custom algorithms and PSC libraries version dependencies............................47
 Learn more about the Machine Learning Toolkit..48

Troubleshooting...50
 Create user facing messages..50
 Use custom logging..51
 Adding Python 3 libraries..51
 Support for the ML-SPL API..52

Release notes..53
 Known issues..53
Introduction to the ML-SPL API

About the ML-SPL API

The Splunk Machine Learning Toolkit (MLTK) contains 30 algorithms natively. For users who want to port their own custom algorithm into the MLTK, you can access the machine learning extensibility API. To add a custom algorithm to the Machine Learning Toolkit, you must write a Python class and register it to the MLTK app. This ML-SPL API Guide covers the process of adding a custom algorithm to the MLTK as well as the option to make that algorithm available to other users through Splunkbase.

For information about the algorithms packaged with the Splunk Machine Learning Toolkit, see the Algorithms section in the Splunk Machine Learning Toolkit User Guide.

You can also extend the Splunk Machine Learning Toolkit with over 300 open source Python algorithms from scikit-learn, pandas, statsmodel, numpy, and scipy libraries. These open source algorithms are available to the Splunk Machine Learning Toolkit through the Python for Scientific Computing add-on available on Splunkbase. You can also package your custom algorithm as a separate app to share on Splunkbase so that other Splunk Machine Learning Toolkit users can use it.

Coding is required to add a custom algorithm to the Splunk Machine Learning Toolkit. Being an advanced Python user or having development experience is an asset.

Add algorithms using GitHub

On-prem customers looking for solutions that fall outside of the 30 native algorithms can also use GitHub to add more algorithms. Solve custom uses cases through sharing and reusing algorithms in the Splunk Community for MLTK on GitHub. Here you can also learn about new machine learning algorithms from the Splunk open source community, and help fellow users of the toolkit.

Cloud customers can also use GitHub to add more algorithms via an app. The Splunk GitHub for Machine learning app provides access to custom algorithms and is based on the Machine Learning Toolkit open source repo. Cloud customers need to create a support ticket to have this app installed.
To access the Machine Learning Toolkit open source repo, see the MLTK GitHub repo.

The Machine Learning Toolkit and Python for Scientific computing add-on must be installed in order for GitHub to work in your Splunk environment.
Develop and package a custom algorithm

Add a custom algorithm to the Machine Learning Toolkit overview

To add a custom algorithm to the Splunk Machine Learning Toolkit, you must register the algorithm in the MLTK app, create a Python script file for the algorithm, and write a Python algorithm class. The algorithm class must implement certain methods which are outlined in the BaseAlgo class in "$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/base.py".

For information about the algorithms packaged with the Splunk Machine Learning Toolkit, see Algorithms in the Machine Learning Toolkit in the User Guide.

Coding is required to add a custom algorithm to the Splunk Machine Learning Toolkit. Development experience is an asset.

Custom algorithm examples

You can view end-to-end examples for the following custom algorithms:

- Correlation Matrix
- Agglomerative Clustering
- Support Vector Regressor
- Savitzky-Golay Filter

Register an algorithm in the Machine Learning Toolkit

In order to use an algorithm in Splunk Machine Learning Toolkit and for it to be visible in the Splunk platform, you must register the algorithm in the MLTK app. You can register the name of an algorithm by manual file update or with the REST API.

To register an algorithm, update the `algos.conf` file with the name of the algorithm you want to add.

`$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/local/algos.conf`

Register by manual file update

Use the following steps to register the name of an algorithm by manual file update.

1. Create or update `algos.conf` in the following directory:
 `$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/local`

2. Add the algorithm name as a stanza, meaning within brackets, to the `algos.conf` file:
 `[[<Your new algorithm class name>]]`

3. Click Save.

4. Restart Splunk Enterprise.

Register with the REST API

You can use the following code to register the name of an algorithm with the REST API. You need administrator permissions in order to use this method.

```
$ curl -k -u admin:<admin pass> https://localhost:8089/servicesNS/nobody/Splunk_ML_Toolkit/configs/conf-algos
-d name="<Your new algorithm class name>"
```

Implement the algorithm

To implement the algorithm, create and name a python script file (.py file) for the algorithm in the following directory:

```
$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos
```

The name of the .py file and the name of the main class in the .py file must be the same as the stanza name, the name in brackets, used in the `algos.conf` file. For example, `[LinearRegression]` for the LinearRegression algorithm.

```
<Your new algorithm class name>.py
```

The name of the algorithm class must be unique and not conflict with other names in the `algos.conf` file.

Write a Python algorithm class

The algorithm class must implement certain methods to operate with upstream processes. These methods are the entry points to an algorithm, where the data and options are specified as arguments.
Best practices

Follow these best practices when writing algorithms:

- Assume invalid input.
- If there is a parameter passed in make sure you check that it is valid.
- If you require a particular field, for example, `_time`, make sure you check for its presence and error accordingly.

Methods

Methods are the entry point to the custom algorithm.

<table>
<thead>
<tr>
<th>Method</th>
<th>Required</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__init__</code></td>
<td>Yes</td>
<td>self, options</td>
</tr>
<tr>
<td><code>fit</code></td>
<td>Yes</td>
<td>self, df, options</td>
</tr>
<tr>
<td><code>apply</code></td>
<td>Only for saved models</td>
<td>self, df, options</td>
</tr>
<tr>
<td><code>register_codecs</code></td>
<td>Only for saved models</td>
<td>(none)</td>
</tr>
<tr>
<td><code>partial_fit</code></td>
<td>No</td>
<td>self, df, options</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>No</td>
<td>self, options</td>
</tr>
</tbody>
</table>

Arguments

Specify data and options as arguments.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>options</td>
<td>Options include:</td>
</tr>
</tbody>
</table>

- **args** (list): A list of the fields used.
- **params** (dict): Any parameters (key-value) pairs in the search.
- **feature_variables** (list): The fields to be used as features.
- **target_variable** (list): The target field for prediction.
- **algo_name** (str): The name of algorithm.
- **mlspl_limits** (dict): `mlspl.conf` stanza properties that may be used in utility methods.

Other options that may exist depending on the search:

- **model_name** (str): The name of the model being saved (into clause).
- **output_name** (str): The name of the output (as clause).
Argument Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>

Example:

The following example is a dictionary of information from the search:

```python
{
    'args': ['sepal_width', 'petal*'],
    'params': {'fit_intercept': 't'},
    'feature_variables': ['petal*'],
    'target_variable': ['sepal_width'],
    'algo_name': 'LinearRegression',
    'mlspl_limits': { ... },
}
```

Attributes

Inside of the `fit` method, two attributes can be attached to `self` by the `search` command.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>self.feature_variables</code> (list)</td>
<td>The wildcard matched list of fields present from the search</td>
</tr>
<tr>
<td><code>self.target_variable</code> (str)</td>
<td>The name of the target field. This field is only present if the <code>from</code> clause is used.</td>
</tr>
</tbody>
</table>

Custom algorithm template

You can use the following custom algorithm template to help get you started.

BaseAlgo class

From base import `BaseAlgo`.

```python
class CustomAlgoTemplate(BaseAlgo):
    def __init__(self, options):
        # Option checking & initializations here
        pass

    def fit(self, self, df, options):
```

6
Fit an estimator to df, a pandas DataFrame of the search results
pass

def partial_fit(self, df, options):
 # Incrementally fit a model
 pass

def apply(self, df, options):
 # Apply a saved model
 # Modify df, a pandas DataFrame of the search results
 return df

@staticmethod
def register_codecs():
 # Add codecs to the codec manager
 pass

Using the template above in a search, as in the example below, reflects the input data back to the search.

| fit CustomAlgoTemplate *

These are all described in detail in the
$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/base.py BaseAlgo class as shown below.
class BaseAlg(object):
 """The BaseAlg class defines the interface for ML-SP algorithms."
 All of the relevant entry and exit points to the algo, methods, and special
attributes are listed below. Inheriting from the BaseAlg class is not
required - however, doing so will ensure that the algorithm implements the
required methods or if that method is called, an error is raised.
...

def __init__(self, options):
 """The initialization function.
This method is """"required"""". The __init__ method provides the chance to
check grammar, convert parameters passed into the search, and initialize
additional objects or imports needed by the algorithm. If none of these
things are needed, a simple pass or return is sufficient.

This will be called before the first batch of data comes in.
The 'options' argument passed to this method is closely related to the
SP search query. For a simple query such as:

| fit_linearegression sepal_width from petal* fit intercept=t

The 'options' returned will be:

| {
| 'args': ['sepal_width', 'petal*'],
| 'params': {'fit_intercept': 't'},
| 'feature_variables': ['petal*'],
| 'target_variable': ['sepal_width']
| ...
| alg0_name: 'uLinearRegression',
| mspf limits: { },

This dictionary of 'options' includes:
- args (list): a list of the fields used
- params (dict): any parameters (key-value) pairs in the search
- feature_variables (list): fields to be used as features
- target_variable (str): the target field for prediction
- alg0 name (str): the name of algorithm
- mspf limits (dict): mspf.conf stanza properties that may be used in utility methods

Other keys that may exist depending on the search:
- model name (str): the name of the model being saved ('into' clause)
- output name (str): the name of the output field ('as' clause)
The feature fields and target field are related to the syntax of the
search as well. If a 'from' clause is present:

| fit LineaRegression target_variable from feature_variables

whereas with an unsupervised algorithm such as KMeans,

| fit KMeans feature_variables

It is important to note that these feature variables in the 'options'
have not been wildcard matched against the available data, meaning, that
if there is a wildcard * in the field names, the wildcards are still
present.
...

self.feature_variables = []
self.target_variable = None
msg = 'The {} algorithm cannot be initialized.'
msg = msg.format(self, class, name)
raise MLSPLNotImplementedError(msg)

def fit(self, df, options):
 """The fit method creates and updates a model - it may make predictions.
The fit method is only called during the fit command and is """"required"""".
The fit method is the central and most important part of adding an algo.
After the __init__ has been called, the field wildcards have been matched
and the available variables are now attached to two attributes on self:

self.feature_variables (list): fields to use for predicting

and if the search uses a 'from' clause:

self.target_variable (str): the field to predict

If the algorithm necessarily makes predictions while fitting, return
the output DataFrame here. Additionally, if the algorithm cannot be
saved, make predictions and return them. Otherwise, make predictions in
the apply method and do not return anything here.
The 'df' argument is a pandas DataFrame from the search results. Note
that modification to 'df' within this method will also modify the
dataframe to be used in the subsequent apply method.
The 'options' argument is the same as those described in the __init__
method.
...

msg = 'The {} algorithm does not support fit.'
msg = msg.format(self, class, name)
raise MLSPLNotImplementedError(msg)

def partial_fit(self, df, options):
 """The partial_fit method updates a model incrementally.
partial_fit is used in the fit command when partial_fit is added to the
search. It is for incrementally updating an algorithm. If the algorithm
does not require a full dataset in order to update, partial_fit can
be used to update the estimator with each """"chunk"""" of data, rather than
waiting for the full dataset to arrive.
On the initial partial_fit, the 'options' are the same as described in
the fit method, however, on the subsequent calls - the 'options' from
the initial fit are used.
The 'df' argument is a pandas DataFrame from the search results.
Running process and method calling conventions

Become familiar with Splunk platform logic pertaining to running process and method calling conventions. In particular, the fit, partial_fit, apply, and summary commands.

Fit command when partial_fit is False

When running the fit command and the partial_fit parameter is in the default state of False, the fit method of the chosen algorithm is called first. If that method returns a DataFrame the process returns to the search. If that method does not return a DataFrame, the apply command is called to return a DataFrame.

The default for the partial_fit parameter is False (partial_fit=f).
Fit command when partial_fit is True

When running the `fit` command and the `partial_fit` parameter is set to True, the `partial_fit` method of the chosen algorithm is called first on each chunk of 50,000 events. The `apply` command is then called on those events. This process continues until you run out of events.
Apply command

When running the `apply` command, the Python object is reconstructed using its codec. Then the `apply` command is called on the events, chunk by chunk.

Summary command

Similar to running the `apply` command, when running the `summary` command, the Python object is reconstructed using its codec. Once done, the `summary` command is called.
Using codecs

The Splunk Machine Learning Toolkit uses codecs to serialize (save or encode) and deserialize (load or decode) algorithm models. A codec facilitates the core part of the serialization/deserialization process of a Python object in memory to file.

The Splunk Machine Learning Toolkit does not use pickles to serialize objects in Python. Instead, it uses a string representation of `__dict__` or use `__getstate__` and `__setstate__` to save and recreate objects. Python objects are converted to JSON objects, then saved into CSV files, and used as lookups within Splunk Enterprise.

To save the model of the algorithm, the algorithm must implement the `register_codecs()` method. This method is invoked when `algorithm.save_model()` is called, and when `algorithm.save_model()` is called, it uses the following process to find the right codec for your algorithm class:
Built-in codecs

The Splunk Machine Learning Toolkit ships with built-in codecs. This documentation shows some examples of how to use them to implement the `register_codecs()` method in your custom algorithm.

Pre-registered classes

The following classes are always loaded into the codec manager, so there is no need to explicitly define objects of these classes in `register_codecs()`.

```python
__builtins__.object
__builtins__.slice
__builtins__.set
__builtins__.type
numpy.ndarray
numpy.int8
numpy.int16
numpy.int32
numpy.int64
numpy.uint8
numpy.uint16
numpy.uint32
numpy.uint64
numpy.float16
numpy.float32
numpy.float64
numpy.float128
numpy.complex64
numpy.complex128
numpy.complex256
numpy.dtype
pandas.core.frame.DataFrame
pandas.core.index.Index
pandas.core.index.Int64Index
pandas.core.internals.BlockManager
```

The list of pre-registered codecs can be found in

`$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/codec/codecs.py`.

SimpleObjectCodec

`SimpleObjectCodec` can be used for any object that can be represented as a dictionary or a list.

You can see this in action with the Support Vector Regressor example.
In this custom algorithm, the codecs have already been configured:

```python
@staticmethod
def register_codecs():
    from codec.codecs import SimpleObjectCodec
    from codec import codecs_manager
    codecs_manager.add_codec('algos.SVR', 'SVR', SimpleObjectCodec)
    codecs_manager.add_codec('sklearn.svm.classes', 'SVR', SimpleObjectCodec)
```

You need codecs for both `algos.SVR.SVR` and `sklearn.svm.classes.SVR`. How do you know which codecs to use?

In most situations, you can use `SimpleObjectCodec` for the wrapper class `algos.SVR.SVR`. For the `SVR` module imported from `sklearn`, you must verify that the algorithm object that is created has a proper `__dict__`. For this example, you can add the following in Python terminal:

```python
>>> from sklearn.svm import SVR
>>> classifier = SVR()
>>> X = [[1,2],[3,4]]
>>> y = [55, 66]
>>> classifier.fit(X, y)
>>> classifier.__dict__
```

That action returns the following result:

```python
{'C': 1.0,
 '_dual_coef_': array([[-1., 1.]]),
 '_gamma': 0.5,
 '_impl': 'epsilon_svr',
 '_intercept_': array([60.5]),
 '_sparse': False,
 'cache_size': 200,
 'class_weight': None,
 'class_weight_': array([], dtype=float64),
 'coef0': 0.0,
 'degree': 3,
 'dual_coef_': array([[-1., 1.]]),
 'epsilon': 0.1,
 'fit_status_': 0,
 'gamma': 'auto',
 'intercept_': array([60.5]),
 'kernel': 'rbf',
 'max_iter': -1,
 'n_support_': array([0, 1073741824], dtype=int32),
 'nu': 0.0,
 'probA_': array([], dtype=float64),
 'probB_': array([], dtype=float64),
```
The returned __dict__ object contains objects/values that are either supported by the json.JSONEncoder, or is one of the pre-registered classes shown in the example.

If one or more objects in __dict__ do not have built-in codec support, you can write a custom codec for them.

Write a custom codec

This example shows you how to write a custom codec for KNeighborsClassifier algorithm. First, you can try to use SimpleObjectCodec.

KNClassifier.py

```python
#!/usr/bin/env python

from sklearn.neighbors import KNeighborsClassifier
from codec import codecs_manager
from base import BaseAlgo, ClassifierMixin
from util.param_util import convert_params

class KNClassifier(ClassifierMixin, BaseAlgo):
    def __init__(self, options):
        self.handle_options(options)
        params = options.get('params', {})
        out_params = convert_params(
            params,
            ints=['k'],
            aliases={'k': 'n_neighbors'}
        )
        self.estimator = KNeighborsClassifier(**out_params)

    @staticmethod
    def register_codecs():
        from codec.codecs import SimpleObjectCodec
        codecs_manager.add_codec('algos.KNClassifier', 'KNClassifier', SimpleObjectCodec)
        codecs_manager.add_codec('sklearn.neighbors.classification',
```

15
In this case, the `SimpleObjectCodec` is not sufficient. When you run command ...
| fit KNClassifier into my_model, it will return an error like this:

```
Investigate an object for a custom codec
```

The error message indicated that part of the model `sklearn.neighbors.kd_tree.KDTree` is not serializable. You can investigate the object in Python terminal:

```python
>>> from sklearn.datasets import load_iris
>>> from sklearn.neighbors import KNeighborsClassifier

>>> iris = load_iris()
>>> X = iris.data
>>> y = iris.target
>>> classifier = KNeighborsClassifier()

>>> classifier.fit(X, y)
>>> classifier.__dict__
```

which gives us back:

```python
{'_fit_X': array([[5.1, 3.5, 1.4, 0.2],
     [5.9, 3. , 5.1, 1.8]],
   '_fit_method': 'kd_tree',
   '_tree': <sklearn.neighbors.kd_tree.KDTree at 0x7ffe07902500>,
   '_y': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
   'algorithm': 'auto',
   'classes_': array([0, 1, 2]),
   'effective_metric_': 'euclidean',
   'effective_metric_params_': {},
   'leaf_size': 30,
   'metric': 'minkowski',
   'metric_params': None,
   'n_jobs': 1,
   'n_neighbors': 5,
   'outputs_2d_': False,
   'p': 2,
   'radius': None,
   'weights': 'uniform'}
```
In this case, '_tree': <sklearn.neighbors.kd_tree.KDTree at 0x7ffe07902500> is not an object SimpleObjectCodec can encode or decode.

You have two options to deal with this.

Option 1: Avoid writing the codec by limiting the algorithm choice

A simple and quick solution, and a way to avoid writing a custom codec, is to add a parameter to the estimator to avoid using a KDTree:

```python
self.estimator = KNeighborsClassifier(algorithm='brute', **out_params)
```

Option 2: Write a Custom Codec

If you must use a codec, you can save the KDTree state and reconstruct it using a custom codec. In Python terminal, run:

```python
>>> kdtree_in_memory = classifier.__dict__['_tree']
>>> kdtree_in_memory.__getstate__()
```

which prints the state of "_tree" in classifier:

```
(array([[ 5.1,  3.5,  1.4,  0.2],
    ...[
  5.9,  3.,  5.1,  1.8]]),
array([[ 2,  13,  14,  16,  22,  35,  36,  38,  40,  41,  42,  49,  12,
    ...143, 144, 145, 107, 120, 102, 122]],
array([[0, 150, 0, 10.296358579614444), (0, 75, 0, 3.5263295365010903),
(75, 150, 0, 4.5061069672168222), (0, 37, 1, 0.8774964387392121),
(37, 75, 1, 3.0364452901377956), (75, 112, 1, 3.0401480227120525),
(112, 150, 1, 2.8744564703609633)],
    dtype=[('idx_start', '<i8'), ('idx_end', '<i8'), ('is_leaf', '<i8'), ('radius', '<f8')])
array([[ 4.3,  2. ,  1. ,  0.1],
    ...[ 7.9,  3.8,  6.9,  2.5]])
```

<sklearn.neighbors.dist_metrics.EuclideanDistance at 0x10d94d320>
Most of the objects are numbers and arrays, which are covered by Python built-in and pre-registered codecs. At the end of the printed state, there is a second embedded object that is not supported by Python build-in or pre-registered codecs:

<sklearn.neighbors.dist_metrics.EuclideanDistance at 0x10d94d320>

You can investigate the state of the embedded object in Python terminal:

```python
>>> dist_metric = kd_tree_in_memory.__getstate__()[1]
>>> dist_metric.__getstate__()
```

which returns:

```
(2.0, array([ 0.]), array(0.))
```

Custom codec implementation

All of the codecs must inherit from `BaseCodec` in `bin/codec/codecs.py`.

Custom codec implemented based on `BaseCodec` is required to define two class methods - `encode()` and `decode()`

```python
class KDTreeCodec(BaseCodec):
    @classmethod
    def encode(cls, obj):
        # Let's ensure the object is the one we think it is
        import sklearn.neighbors
        assert type(obj) == sklearn.neighbors.kd_tree.KDTree

        # Let's retrieve our state from our previous exploration
        state = obj.__getstate__()

        # Return a dictionary
        return {
            '__mlspl_type': [type(obj).__module__, type(obj).__name__],
            'state': state
        }

    @classmethod
    def decode(cls, obj):
        # Import the class we want to initialize
        from sklearn.neighbors.kd_tree import KDTree

        # Get our state from our saved obj
        state = obj['state']
```
Here is where we create the new object
doing whatever is required for this particular class
t = KDTree.__new__(KDTree)

Set the state
t.__setstate__(state)

And we're done!
return t

Next, write a codec for sklearn.neighbors.dist_metrics.EuclideanDistance:

class EuclideanDistanceCodec(BaseCodec):
 @classmethod
 def encode(cls, obj):
 import sklearn.neighbors.dist_metrics
 assert type(obj) ==
sklearn.neighbors.dist_metrics.EuclideanDistance

 state = obj.__getstate__()

 return {
 '__mlspl_type': [type(obj).__module__, type(obj).__name__],
 'state': state
 }

 @classmethod
 def decode(cls, obj):
 import sklearn.neighbors.dist_metrics

 state = obj['state']

 d = sklearn.neighbors.dist_metrics.EuclideanDistance()
 d.__setstate__(state)

 return d

The last step is to make sure that all of the necessary codecs are registered in
the register_codecs() method of the algorithm:

@staticmethod
def register_codecs():
 from codec.codecs import SimpleObjectCodec
codecs_manager.add_codec('algos.KNClassifier', 'KNClassifier',
SimpleObjectCodec)
codecs_manager.add_codec('sklearn.neighbors.classification',

'KNeighborsClassifier', SimpleObjectCodec)
codecs_manager.add_codec('sklearn.neighbors.kd_tree', 'KDTree',
KDTreeCodec)
codecs_manager.add_codec('sklearn.neighbors.dist_metrics',
'EuclideanDistance', EuclideanDistanceCodec)

Complete example

KNClassifier.py

```python
#!/usr/bin/env python

from sklearn.neighbors import KNeighborsClassifier

from codec import codecs_manager
from codec.codecs import BaseCodec
from base import BaseAlgo, ClassifierMixin
from util.param_util import convert_params

class KNClassifier(ClassifierMixin, BaseAlgo):
    def __init__(self, options):
        self.handle_options(options)
        params = options.get('params', {})
        out_params = convert_params(
            params,
            ints=['k'],
            strs=['algorithm'],
            aliases={'k': 'n_neighbors'}
        )

        if 'algorithm' in out_params:
            if out_params['algorithm'] not in ['brute', 'KDTree']:
                raise RuntimeError("algorithm must be either 'brute' or
'KDTree'")

            self.estimator = KNeighborsClassifier(**out_params)

    @staticmethod
def register_codecs():
        from codec.codecs import SimpleObjectCodec
        codecs_manager.add_codec('algos.KNClassifier', 'KNClassifier',
SimpleObjectCodec)
        codecs_manager.add_codec('sklearn.neighbors.classification',
'KNeighborsClassifier', SimpleObjectCodec)
        codecs_manager.add_codec('sklearn.neighbors.kd_tree', 'KDTree',
KDTreeCodec)
        codecs_manager.add_codec('sklearn.neighbors.dist_metrics',
'EuclideanDistance', EuclideanDistanceCodec)
```
class KDTreeCodec(BaseCodec):
 @classmethod
 def encode(cls, obj):
 import sklearn.neighbors
 assert type(obj) == sklearn.neighbors.kd_tree.KDTree
 state = obj.__getstate__()
 return {
 '__mlspl_type': [type(obj).__module__, type(obj).__name__],
 'state': state
 }

 @classmethod
 def decode(cls, obj):
 from sklearn.neighbors.kd_tree import KDTree
 state = obj['state']
 t = KDTree.__new__(KDTree)
 t.__setstate__(state)
 return t

class EuclideanDistanceCodec(BaseCodec):
 @classmethod
 def encode(cls, obj):
 import sklearn.neighbors.dist_metrics
 assert type(obj) == sklearn.neighbors.dist_metrics.EuclideanDistance
 state = obj.__getstate__()
 return {
 '__mlspl_type': [type(obj).__module__, type(obj).__name__],
 'state': state
 }

 @classmethod
 def decode(cls, obj):
 import sklearn.neighbors.dist_metrics
 state = obj['state']
 d = sklearn.neighbors.dist_metrics.EuclideanDistance()
 d.__setstate__(state)
 return d

Package an algorithm for Splunkbase

To package an algorithm for Splunkbase, create an app, then add the custom algorithm and test it in the application. For more information on Splunkbase, see Working with Splunkbase.
Create an app in Splunkbase

To build an app in Splunkbase, see Create a Splunk app in the Splunk Developer portal. Before you choose a name for your app, see Naming Conventions for apps and add-ons.

There is a set of required fields that must be included in your app. The following table shows an example of an app with the barebones template and corresponding user input for the required fields.

You do not need to load upload assets in the app.

<table>
<thead>
<tr>
<th>Required Field</th>
<th>Example User Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>application name</td>
</tr>
<tr>
<td>Folder name</td>
<td>application name</td>
</tr>
<tr>
<td>Template</td>
<td>barebones</td>
</tr>
</tbody>
</table>

Add the custom algorithm

The process of adding a custom algorithm to an app is similar to adding an algorithm to the Splunk Machine Learning Toolkit, see Custom algorithm examples.

You need access to the application's file system to add a custom algorithm to the app.

Follow these steps to add an algorithm to your app:

Name the algorithm

There are restrictions on algorithm names in the Splunk Machine Learning Toolkit. These namespace constraints apply to individual packaging in the application, but only affect the user of the application.

- The algorithm name must be unique across all of the Splunk Machine Learning Toolkit and its add-ons.
- You cannot use `algos` as a `package_name`, because `algos` is the default folder for the Splunk Machine Learning Toolkit.
- Any references to algorithm source files in the `register_codecs` method must also reference the same package name.

Example
Following installation of the SVR_app application, there must be no other instances of SVR.py within the Splunk Machine Learning Toolkit environment. If there is more than one instance, the most recently added copy takes precedence.

Add the implementation file

The following example uses the algorithm Support Vector Regression, which is referred to as SVR.

1. Open the directory SPLUNK_HOME/etc/apps/SVR_app/bin/
2. Create a folder inside your app's bin folder named app_algos.
 Here, the name app_algos is arbitrary, however it must conform to the namespace constraints.
3. Create an empty file within app_algos named __init__.py.
 This converts the directory into a python package, and lets you import modules such as SVR.
4. Create an empty file within that same folder named SVR.py.
5. Add the following lines of code to SVR.py:
   ```python
   from sklearn.svm import SVR as _SVR
   from base import BaseAlgo, RegressorMixin
   from util.param_util import convert_params
   class SVR(RegressorMixin, BaseAlgo):

       def __init__(self, options):
           self.handle_options(options)
           params = options.get('params', {})
           out_params = convert_params(
               params,
               floats=['C', 'gamma'],
               strs=['kernel'],
               ints=['degree'],
           )
           self.estimator = _SVR(**out_params)
       @classmethod
       def register_codecs():
           from codec.codecs import SimpleObjectCodec
           from codec import codecs_manager
           codecs_manager.add_codec('app_algos.SVR', 'SVR', SimpleObjectCodec)
           codecs_manager.add_codec('sklearn.svm.classes', 'SVR', SimpleObjectCodec)
   ```
For a detailed look at how this code works in a real-world example, see the Support Vector Regressor example.

Modify the algorithm configuration file

The code example below registers the algorithm SVR and identifies the location of algorithm.py in the directory of the Splunk Machine Learning Toolkit. To modify the algorithm configuration file:

1. Add a configuration file name algos.conf to the directory SPLUNK_HOME/etc/apps/SVR_app/local/.
2. Add the following code to the algos.conf file:

```
[SVR]
package=app_algos
disabled=false
```

The stanza algorithm class name, must always match the name of the algorithm.py. So, in this example [SVR] matches with the SVR.py file contained in the package SPLUNK_HOME/etc/apps/<app_name>/bin/<app_algos>/.

In order for Splunk Machine Learning Toolkit to find the algos.conf file, you must export its content system-wide.

3. Open the SPLUNK_HOME/etc/apps/SVR_app/metadata/local.meta file and add the following code:

```
[algos]
export = system
```

This code exports the algorithm to the system and makes the algorithms within the add-on viewable across other apps such as the Splunk Machine Learning Toolkit. The stanza name [algos] is not configurable. Any other name will not be recognized by the Splunk Machine Learning Toolkit.

4. Restart Splunk Enterprise.

Test the packaged algorithm

Test in the MLTK default search application

When you create and export an algorithm, you can call it the same way you call an algorithm shipped with Splunk Machine Learning Toolkit.

To test the algorithm in the default search application:

1. Navigate to the search bar in the Splunk Machine Learning Toolkit.
2. Enter the following SPL:

   ```spl
   |inputlookup iris.csv | fit SVR petal_width from sepal_length
   ```

If your code executes without errors, then your algorithm application is correct.

Test in the add-on

The process for calling an algorithm is the same when working within the add-on as in the MLTK default search application.

To test the example algorithm in the add on:

1. Navigate to your application `app_name` from Splunk Enterprise home page.
2. Enter the following SPL:

   ```spl
   index=_internal | head 1000 | fit SVR data_hour from cpu_seconds
   ```

If your code executes without errors, then your algorithm application is correct.
Custom algorithm examples

Correlation Matrix example

This example uses the Python library pandas which is part of the Python for Scientific Computing app. This Correlation Matrix example covers the following tasks:

- Using the BaseAlgo class
- Validating search syntax
- Converting parameters

The DataFrame.corr method constructs a correlation matrix. In addition to constructing the correlation matrix, you pass a parameter to the algorithm to switch between Pearson, Kendall and Spearman correlations. See the pandas library documentation for more information on this method.

A search using this custom algorithm looks like this:

```
index=foo sourcetype=bar | fit CorrelationMatrix method=kendall <fields>
```

Steps

Follow these steps to add the Correlation Matrix algorithm.

Fit a correlation matrix on all `<fields>`:

1. Register the algorithm in `algos.conf` using one of the following methods.
 1. Register the algorithm using the REST API:

```sh
$ curl -k -u admin:<admin pass>
https://localhost:8089/servicesNS/nobody/Splunk_ML_Toolkit/configs/conf-algos
-d name="CorrelationMatrix"
```

2. Register the algorithm manually:
 Modify or create the `algos.conf` file located in `SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/local/` and add the following stanza to register your algorithm:

```
[CorrelationMatrix]
```

When you register the algorithm with this method, you must restart Splunk Enterprise.
2. Create the python file in the algos folder. For this example, you create
$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos/CorrelationMatrix.py.
Import the relevant modules. In this case, use the BaseAlgo class which
provides a skeleton class to catch errors.
from base import BaseAlgo

3. Define the class.
 Inherit from BaseAlgo. The class name is the name of the algorithm.

class CorrelationMatrix(BaseAlgo):
 """Compute and return a correlation matrix."""

4. Define the __init__ method.
The __init__ method passes the options from the search to the algorithm.
 Ensure that there are fields present and no from clause and that only valid
 methods are used by raising RuntimeError appropriately:

 def __init__(self, options):
 """Check for valid correlation type, and save it to an
 attribute on self."""

 feature_variables = options.get('feature_variables', {})
 target_variable = options.get('target_variable', {})

 if len(feature_variables) == 0:
 raise RuntimeError('You must supply one or more
 fields')

 if len(target_variable) > 0:
 raise RuntimeError('CorrelationMatrix does not
 support the from clause')

 valid_methods = ['spearman', 'kendall', 'pearson']

 # Check to see if parameters exist
 params = options.get('params', {})

 # Check if method is in parameters in search
 if 'method' in params:
 if params['method'] not in valid_methods:
 error_msg = 'Invalid value for method: must be
 one of {}'.format(', '.join(valid_methods))
 raise RuntimeError(error_msg)

 # Assign method to self for later usage
 self.method = params['method']

 # Assign default method & ensure no other parameters are
 present
 else:
 # Default method for correlation

27
self.method = 'pearson'

Check for bad parameters
if len(params) > 0:
 raise RuntimeError('The only valid parameter is method."

The options that are passed to this method are closely related to the SPL search query being used.

For a simple query such as:

| fit LinearRegression sepal_width from petal* fit_intercept=t

The options returned are:

```
{
    'args': [u'sepal_width', u'petal*'],
    'params': {u'fit_intercept': u't'},
    'feature_variables': [u'petal*'],
    'target_variable': [u'sepal_width'],
    'algo_name': u'LinearRegression',
}
```

This dictionary of options includes:

- args (list) - a list of the fields used
- params (dict) - any parameters (key-value) pairs in the search
- feature_variables (list) - fields to be used as features
- target_variable (list) - the target field for prediction
- algo_name (str) - the name of algorithm

Other keys that may exist depending on the search:

- model_name (str) - the name of the model being saved ('into' clause)
- output_name (str) - the name of the output ('as' clause)

The feature_fields and target_field are related to the syntax of the search. If a from clause is present:

| fit LinearRegression target_variable from feature_variables

whereas with an unsupervised algorithm such as KMeans:

| fit KMeans feature_variables
The `feature_variables` in the options have not been wildcard matched against the available data. If there are wildcards (*) in the field names, the wildcards are present in the `feature_variables`.

5. Define the `fit` method.
 The `fit` method is where you compute the correlations. Afterwards, return the DataFrame.

```python
def fit(self, df, options):
    # Compute the correlations and return a DataFrame.

    # df contains all the search results, including hidden fields
    # but the requested requested are saved as
    self.feature_variables
    requested_columns = df[self.feature_variables]

    # Get correlations
    correlations = requested_columns.corr(method=self.method)

    # Reset index so that all the data are in columns
    # (this is usually not necessary, but is for the corr method)
    output_df = correlations.reset_index()

    return output_df
```

When defining the `fit` method, you have the option to either return values or to do nothing, which returns `None`. If you return the dataframe, no `apply` method is needed. The `apply` method is only needed when a saved model must make predictions on unseen data.

Finished example

```python
from base import BaseAlgo

class CorrelationMatrix(BaseAlgo):
    # Compute and return a correlation matrix.

    def __init__(self, options):
        # Check for valid correlation type, and save it to an attribute on self.

        feature_variables = options.get('feature_variables', {})
        target_variable = options.get('target_variable', {})

        if len(feature_variables) == 0:
            raise RuntimeError('You must supply one or more fields')
```

29
if len(target_variable) > 0:
 raise RuntimeError('CorrelationMatrix does not support the from clause')

valid_methods = ['spearman', 'kendall', 'pearson']

Check to see if parameters exist
params = options.get('params', {})

Check if method is in parameters in search
if 'method' in params:
 if params['method'] not in valid_methods:
 error_msg = 'Invalid value for method: must be one of
', ', '.join(valid_methods), '
raise RuntimeError(error_msg)

 # Assign method to self for later usage
 self.method = params['method']

Assign default method and ensure no other parameters are present
else:
 # Default method for correlation
 self.method = 'pearson'

 # Check for bad parameters
 if len(params) > 0:
 raise RuntimeError('The only valid parameter is method.')

def fit(self, df, options):
 """Compute the correlations and return a DataFrame."""

 # df contains all the search results, including hidden fields
 # but the requested requested are saved as
 self.feature_variables
 requested_columns = df[self.feature_variables]

 # Get correlations
 correlations = requested_columns.corr(method=self.method)

 # Reset index so that all the data are in columns
 # (this is necessary for the corr method)
 output_df = correlations.reset_index()

 return output_df
You might have to reorder your fields with the fields or table command.

Agglomerative Clustering example

This example adds scikit-learn's AgglomerativeClustering algorithm to the Splunk Machine Learning Toolkit. This Agglomerative Clustering example covers the following tasks:

- Using the BaseAlgo class
- Validating search syntax
- Converting parameters
- Using df_util utilities
- Adding a custom metric to the algorithm

In addition to inheriting from the BaseAlgo class, this example uses the convert_params utility and the df_util module. You can use scikit-learn's silhouette_samples function to create silhouette scores for each cluster label. See the scikit-learn documentation for more details on the
AgglomerativeClustering algorithm as well as the silhouette_samples function.

Steps

Follow these steps to add the Agglomerative Clustering algorithm.

1. Register the algorithm in algos.conf.
 1. Register the algorithm using the REST API:

   ```
   $ curl -k -u admin:<admin pass> 
   https://localhost:8089/servicesNS/nobody/Splunk_ML_Toolkit/configs/conf-algos 
   -d name="AgglomerativeClustering"
   ```

2. Register the algorithm manually:
 Modify or create the algos.conf file located in
 $SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/local/ and add the
 following stanza to register your algorithm

   ```
   [AgglomerativeClustering]
   ```

 When you register the algorithm with this method, you will need to
 restart Splunk Enterprise.

3. Create the python file in the algos folder. For this example, you create
 $SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos/AgglomerativeClustering.py
 Ensure any needed code is imported. Import the convert_params utility
 and df_util module.

   ```
   import numpy as np
   from sklearn.metrics import silhouette_sample
   from sklearn.cluster import AgglomerativeClustering as AgClustering
   from base import BaseAlgo
   from util.param_util import convert_params
   from util import df_util
   ```

4. Define the class.
 Inherit from the BaseAlgo class:

   ```
   class AgglomerativeClustering(BaseAlgo):
       """Use scikit-learn's AgglomerativeClustering algorithm
to cluster data."""
   ```

5. Define the __init__ method.
 ♦ Check for valid syntax
 ♦ Convert parameters
 ◇ The convert_params utility tries to convert parameters into
 the declared type.
 ◇ In this example, the user will pass k=<some integer> to the
 estimator -- however, when it is passed in via the search
query, it is treated as a string.

◊ The convert_params utility will try to convert the k parameter
to an integer and error accordingly if it cannot.

◊ The alias lets users define the number of clusters with k
instead of n_clusters.

♦ Attach the initialized estimator to self with the converted
parameters.

def __init__(self, options):

 feature_variables = options.get('feature_variables', {})
 target_variable = options.get('target_variable', {})

 # Ensure fields are present
 if len(feature_variables) == 0:
 raise RuntimeError('You must supply one or more
 fields')

 # No from clause allowed
 if len(target_variable) > 0:
 raise RuntimeError('AgglomerativeClustering does not
 support the from clause')

 # Convert params & alias k to n_clusters
 params = options.get('params', {})
 out_params = convert_params(
 params,
 ints=['k'],
 strs=['linkage', 'affinity'],
 aliases={'k': 'n_clusters'}
)

 # Check for valid linkage
 if 'linkage' in out_params:
 valid_linkage = ['ward', 'complete', 'average']
 if out_params['linkage'] not in valid_linkage:
 raise RuntimeError('linkage must be one of:
 {}\'.format(', '.join(valid_linkage)))

 # Check for valid affinity
 if 'affinity' in out_params:
 valid_affinity = ['l1', 'l2', 'cosine', 'manhattan',
 'precomputed', 'euclidean']

 if out_params['affinity'] not in valid_affinity:
 raise RuntimeError('affinity must be one of:
 {}\'.format(', '.join(valid_affinity)))

 # Check for invalid affinity & linkage combination
 if 'linkage' in out_params and 'affinity' in out_params:
if out_params['linkage'] == 'ward':
 if out_params['affinity'] != 'euclidean':
 raise RuntimeError('ward linkage (default) must use euclidean affinity (default)')

 # Initialize the estimator
 self.estimator = AgClustering(**out_params)

The convert_params utility is small and simple. When it is passed parameters from the search, they're received as strings. If you would like to pass them to an algorithm or estimator, you need to convert them to the proper type (e.g. an int or a boolean). The function does exactly this.

So when convert_params is called, it will convert the parameters from the search to the proper type if they are one of the following:

- float
- int
- string
- boolean

5. Define the fit method.

- To merge predictions with the original data, first make a copy.
- Use the df_util's prepare_features method.
- After making the predictions, create an output dataframe. Use the nans mask returned from prepare_features to know where to insert the rows if there were any nulls present.
- Lastly, merge with the original dataframe and return.

```python
def fit(self, df, options):
    """Do the clustering and merge labels with original data.""
    # Make a copy of the input data
    X = df.copy()

    # Use the df_util prepare_features method to
    # - drop null columns & rows
    # - convert categorical columns into dummy indicator
    columns
    # X is our cleaned data, nans is a mask of the null value
    locations
    X, nans, columns = df_util.prepare_features(X, self.feature_variables)

    # Do the actual clustering
    y_hat = self.estimator.fit_predict(X.values)

    # attach silhouette coefficient score for each row
    silhouettes = silhouette_samples(X, y_hat)
```
Combine the two arrays, and transpose them.
y_hat = np.vstack([y_hat, silhouettes]).T

Assign default output names
default_name = 'cluster'

Get the value from the as-clause if present
output_name = options.get('output_name', default_name)

There are two columns - one for the labels, for the silhouette scores
output_names = [output_name, 'silhouette_score']

Use the predictions and nans-mask to create a new dataframe
output_df = df_util.create_output_dataframe(y_hat, nans, output_names)

Merge the dataframe with the original input data
df = df_util.merge_predictions(df, output_df)
return df

The prepare features does a number of things, and is just one of the utility methods in df_util.py.

prepare_features(X, variables, final_columns=None, get_dummies=True)

This method defines conventional steps to prepare features:

- drop unused columns
- drop rows that have missing values
- optionally (if get_dummies==True)
- convert categorical fields into indicator dummy variables
- optionally (if final_column is provided)
- make the resulting dataframe match final_columns

Args:

X (dataframe): input dataframe
variables (list): column names
final_columns (list): finalized column names - default is None
get_dummies (bool): indicate if categorical variable should be converted - default is True

Returns:

X (dataframe): prepared feature dataframe
nans (np array): boolean array to indicate which rows have missing values in the original dataframe
columns (list): sorted list of feature column names

Output shape: In this example, you add two columns rather than just one column to the output. You need to make sure that the output_names passed to the create_output_dataframe method has two names in it.

Finished example

```python
import numpy as np
from sklearn.cluster import AgglomerativeClustering as AgClustering
from sklearn.metrics import silhouette_samples
from base import BaseAlgo
from util.param_util import convert_params
from util import df_util

class AgglomerativeClustering(BaseAlgo):
    
    def __init__(self, options):
        feature_variables = options.get('feature_variables', {})
        target_variable = options.get('target_variable', {})

        # Ensure fields are present
        if len(feature_variables) == 0:
            raise RuntimeError('You must supply one or more fields')

        # No from clause allowed
        if len(target_variable) > 0:
            raise RuntimeError('AgglomerativeClustering does not support the from clause')

        # Convert params & alias k to n_clusters
        params = options.get('params', {})
        out_params = convert_params(
            params,
            ints=['k'],
            strs=['linkage', 'affinity'],
            aliases={'k': 'n_clusters'}
        )

        # Check for valid linkage
        if 'linkage' in out_params:
            valid_linkage = ['ward', 'complete', 'average']
```

if out_params['linkage'] not in valid_linkage:
 raise RuntimeError('linkage must be one of:
 {}\n'.format(', '.join(valid_linkage)))

Check for valid affinity
if 'affinity' in out_params:
 valid_affinity = ['l1', 'l2', 'cosine', 'manhattan',
 'precomputed', 'euclidean']

 if out_params['affinity'] not in valid_affinity:
 raise RuntimeError('affinity must be one of:
 {}\n'.format(', '.join(valid_affinity)))

Check for invalid affinity & linkage combination
if 'linkage' in out_params and 'affinity' in out_params:
 if out_params['linkage'] == 'ward':
 if out_params['affinity'] != 'euclidean':
 raise RuntimeError('ward linkage (default)
must use euclidean affinity (default)')

 # Initialize the estimator
 self.estimator = AgClustering(**out_params)

def fit(self, df, options):
 """Do the clustering & merge labels with original data."""
 # Make a copy of the input data
 X = df.copy()

 # Use the df_util prepare_features method to
 # - drop null columns & rows
 # - convert categorical columns into dummy indicator
 columns
 # X is our cleaned data, nans is a mask of the null value
 locations
 X, nans, columns = df_util.prepare_features(X,
 self.feature_variables)

 # Do the actual clustering
 y_hat = self.estimator.fit_predict(X.values)

 # attach silhouette coefficient score for each row
 silhouettes = silhouette_samples(X, y_hat)

 # Combine the two arrays, and transpose them.
 y_hat = np.vstack([y_hat, silhouettes]).T

 # Assign default output names
 default_name = 'cluster'

 # Get the value from the as-clause if present
 output_name = options.get('output_name', default_name)
There are two columns - one for the labels, for the silhouette scores
output_names = [output_name, 'silhouette_score']

Use the predictions & nans-mask to create a new dataframe
output_df = df_util.create_output_dataframe(y_hat, nans, output_names)

Merge the dataframe with the original input data
def = df_util.merge_predictions(df, output_df)
return df

Silhouette plot examples

You can now make a silhouette plot. These can be useful for selecting the number of clusters if not known a priori.
Often the global average is useful for such a plot. It is added in the following screenshot as a chart overlay:
Support Vector Regressor example

This example adds scikit-learn's Support Vector Regressor algorithm to the Splunk Machine Learning Toolkit. This Support Vector Regressor example covers the following tasks:

- Using the `BaseAlgo` and a mixin
- Converting parameters
- Using `register_codecs`

In addition to inheriting from the `BaseAlgo` class, this example also uses the `RegressorMixin` class. The mixin has already filled out the fit and apply methods meaning you only need to define the `__init__` and `register_codecs` methods. See the scikit-learn documentation for more details on the Support Vector Regressor (SVR) algorithm.

Steps

Follow these steps to add the Support Vector Regressor algorithm.

1. Register the algorithm in `algos.conf` using one of the following methods.
 1. Register the algorithm using the REST API:

      ```
      $ curl -k -u admin:<admin pass> 
      https://localhost:8089/servicesNS/nobody/Splunk_ML_Toolkit/configs/conf-algos 
      -d name="SVR"
      ```
 2. Register the algorithm manually:
 Modify or create the `algos.conf` file located in
 `SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/local/` and add the following stanza to register your algorithm
      ```
      [SVR]
      ```
 When you register the algorithm with this method, you must restart Splunk.

2. Create the python file in the `algos` folder. For this example, we create
 `SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos/SVR.py`
   ```
   from sklearn.svm import SVR as _SVR
   ```
   ```
   from base import BaseAlgo, RegressorMixin
   from util.param_util import convert_params
   ```

3. Define the class.
 Here we inherit from both the RegressorMixin and the BaseAlgo.
When inheriting from multiple classes here, we need to make sure the RegressorMixin comes first. BaseAlgo will raise errors if a method is not implemented. In this case, our methods are defined in RegressorMixin so we must list that class first.

```python
class SVR(RegressorMixin, BaseAlgo):
    """Predict numeric target variables via scikit-learn's SVR algorithm."""

4. Define the __init__ method.
   ♦ Note we use the RegressorMixin's handle_options method to check for feature & target variables.
   ♦ The RegressorMixin also implicitly expects a variable 'estimator' to be attached to self.

    def __init__(self, options):
        self.handle_options(options)

        params = options.get('params', {})
        out_params = convert_params(
            params,
            floats=['C', 'gamma'],
            strs=['kernel'],
            ints=['degree'],
        )

        self.estimator = _SVR(**out_params)

5. Define the register_codecs method.
   ♦ We would like to save the model so that it can be applied on new data.
   ♦ RegressorMixin has already defined the fit & apply methods for us, but to save, we must define the register_codecs method
   ♦ Here we add two things to serialize:
      ◊ one, the algorithm itself
      ◊ two, the imported SVR module

        @staticmethod
        def register_codecs():
            from codec.codecs import SimpleObjectCodec
            from codec import codecs_manager
            codecs_manager.add_codec('algos.SVR', 'SVR', SimpleObjectCodec)
            codecs_manager.add_codec('sklearn.svm.classes', 'SVR', SimpleObjectCodec)

Most often, you will not need to use anything outside of the SimpleObjectCodec but sometimes if there are circular references or unusual properties to the algorithm, you may need to write your own.
Writing your own codec sounds harder than it really is. A codec defines how to serialize (save) and deserialize (load) python objects into and from strings. Here is an example of a custom codec needed for a subcomponent in the DecisionTreeClassifier algorithm.

```python
from codec.codecs import BaseCodec

class TreeCodec(BaseCodec):
 @classmethod
 def encode(cls, obj):
 import sklearn.tree
 assert type(obj) == sklearn.tree._tree.Tree

 init_args = obj.__reduce__()[1]
 state = obj.__getstate__()

 return {
 '__mlspl_type': [type(obj).__module__, type(obj).__name__],
 'init_args': init_args,
 'state': state
 }

 @classmethod
 def decode(cls, obj):
 import sklearn.tree

 init_args = obj['init_args']
 state = obj['state']

 t = sklearn.tree._tree.Tree(*init_args)
 t.__setstate__(state)

 return t

So then in DecisionTreeClassifier.py, the register_codecs method looks like this:

```python
@staticmethod
def register_codecs():
    from codec.codecs import SimpleObjectCodec, TreeCodec
    codecs_manager.add_codec('algos.DecisionTreeClassifier', SimpleObjectCodec)
    codecs_manager.add_codec('sklearn.tree', SimpleObjectCodec)
    codecs_manager.add_codec('sklearn.tree._tree', TreeCodec)
```

42
from sklearn.svm import SVR as _SVR
from base import BaseAlgo, RegressorMixin
from util.param_util import convert_params

class SVR(RegressorMixin, BaseAlgo):
 def __init__(self, options):
 self.handle_options(options)
 params = options.get('params', {})
 out_params = convert_params(
 params,
 floats=['C', 'gamma'],
 strs=['kernel'],
 ints=['degree'],
)

 self.estimator = _SVR(**out_params)

 @staticmethod
 def register_codecs():
 from codec.codecs import SimpleObjectCodec
 from codec import codecs_manager
 codecs_manager.add_codec('algos.SVR', 'SVR',
 SimpleObjectCodec)
 codecs_manager.add_codec('sklearn.svm.classes', 'SVR',
 SimpleObjectCodec)

Savitzky-Golay Filter example

This example adds SciPy’s implementation of a Savitzky-Golay signal processing filter to the Splunk Machine Learning Toolkit. This Savitzky-Golay Filter example covers the following tasks:

- Using the BaseAlgo class
- Converting parameters
- Using the prepare_features utility
- Using an arbitrary function to transform data

Since SciPy's savgol_filter is only a function, work is performed using the fit method which returns the transformed values. See the SciPy documentation for
Steps

Follow these steps to add the Savitzky-Golay Filter algorithm.

1. Register the algorithm in `algos.conf` using one of the following methods.
 1. Register the algorithm using the REST API:

   ```bash
   $ curl -k -u admin:<admin pass>
   https://localhost:8089/servicesNS/nobody/Splunk_ML_Toolkit/configs/conf-algos
   -d name="SavgolFilter"
   ```

 2. Register the algorithm manually:
 Modify or create the `algos.conf` file located in
 `$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/local/` and add the
 following stanza to register your algorithm

      ```
      [SavgolFilter]
      ```
 When you register the algorithm with this method, you will need to
 restart Splunk.

2. Create the python file in the `algos` folder. For this example, we create
 `$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos/SavgolFilter.py`.

   ```python
   import numpy as np
   from scipy.signal import savgol_filter
   from base import BaseAlgo
   from util.param_util import convert_params
   from util import df_util
   ```

3. Define the class.

   ```python
   class SavgolFilter(BaseAlgo):
   """Use SciPy's savgol_filter to run a filter over fields."""
   ```

4. Define the `__init__` method.
 Since there isn't an estimator class like other examples, attach the params
to the object (`self`) to use later.

   ```python
   def __init__(self, options):
   # set parameters
   params = options.get('params', {})
   out_params = convert_params(
       params,
       ints=['window_length', 'polyorder', 'deriv']
   )

   # set defaults for parameters
   if 'window_length' in out_params:
   ```
self.window_length = out_params['window_length']
else:
 self.window_length = 5

if 'polyorder' in out_params:
 self.polyorder = out_params['polyorder']
else:
 self.polyorder = 2

if 'deriv' in out_params:
 self.deriv = out_params['deriv']
else:
 self.deriv = 0

5. Define the **fit** method.

```python
def fit(self, df, options):
    X = df.copy()
    X, nans, columns = df_util.prepare_features(X, self.feature_variables)

    # Define a wrapper function
    def f(x):
        return savgol_filter(x, self.window_length, self.polyorder, self.deriv)

    # Apply that function along each column of X
    y_hat = np.apply_along_axis(f, 0, X)

    names = ['SG_%s' % col for col in columns]
    output_df = df_util.create_output_dataframe(y_hat, nans, names)
    df = df_util.merge_predictions(df, output_df)

    return df
```

Finished example

```python
import numpy as np
from scipy.signal import savgol_filter

from base import BaseAlgo
from util.param_util import convert_params
from util import df_util

class SavgolFilter(BaseAlgo):
    def __init__(self, options):
        # set parameters
        params = options.get('params', {})
        out_params = convert_params(....
```

45
params,
 ints=['window_length', 'polyorder', 'deriv'])

set defaults for parameters
if 'window_length' in out_params:
 self.window_length = out_params['window_length']
else:
 self.window_length = 5

if 'polyorder' in out_params:
 self.polyorder = out_params['polyorder']
else:
 self.polyorder = 2

if 'deriv' in out_params:
 self.deriv = out_params['deriv']
else:
 self.deriv = 0

def fit(self, df, options):
 X = df.copy()
 X, nans, columns = df_util.prepare_features(X,
 self.feature_variables)

 def f(x):
 return savgol_filter(x, self.window_length,
 self.polyorder, self.deriv)

 y_hat = np.apply_along_axis(f, 0, X)

 names = ['SG%s' % col for col in columns]
 output_df = df_util.create_output_dataframe(y_hat, nans, names)
 df = df_util.merge_predictions(df, output_df)

 return df
Additional resources

Custom algorithms and PSC libraries version dependencies

Running version 5.0.0 of the MLTK requires Splunk Enterprise 8.0 or later or Splunk Cloud. The Splunk Machine Learning Toolkit requires the Python for Scientific Computing (PSC) add-on.

- Upgrading to version 3.4.0 or above (4.0.0, 4.1.0, 4.2.0, 4.3.0, 4.4.0, 4.4.1, and 4.4.2) of the MLTK requires upgrading to version 1.3 of the Python for Scientific Computing add-on.
- Upgrading to version 4.5.0 of the MLTK requires version 1.4 of the Python for Scientific Computing add-on.
- Upgrading to version 5.0.0 of the MLTK requires upgrading to version 2.0 of the Python for Scientific Computing add-on.

If you have written any custom algorithms that rely on the PSC libraries, upgrading to version 1.3 or 1.4 the PSC library add-on will impact those algorithms. You must re-train any models (re-run the search that used the `fit` command) using those algorithms after you upgrade the PSC add-on.

You cannot access new features in the MLTK without upgrading to the latest version of the toolkit. See the following dependencies table for the specific requirements between the MLTK and PSC add-on versions.

Specific version dependencies

<table>
<thead>
<tr>
<th>MLTK Version</th>
<th>PSC Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.5.0</td>
<td>1.4</td>
</tr>
<tr>
<td>4.4.2</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.4.1</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.4.0</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.3.0</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.2.0</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>MLTK Version</td>
<td>PSC Version</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.3.0</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.2.0</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.1.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Any algorithms that have been imported from the Python for Scientific Computing add-on into the Machine Learning Toolkit are overwritten when the MLTK app is updated to a new version. Prior to upgrading the MLTK, save your custom algorithms and re-import them manually after the upgrade.

Algorithms are stored in `$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos` on Unix-based systems and `%SPLUNK_HOME%/etc/apps/Splunk_ML_Toolkit/bin/algos` on Windows systems.

Learn more about the Machine Learning Toolkit

There are many opportunities and options to learn more about the MLTK.

- The toolkit ships with several example datasets meaning you can practice machine learning concepts, or re-create the Showcase examples in your own instance before working with your own data.
- Watch Splunk Machine Learning Videos on our YouTube channel.
- Read more about machine learning tools in Splunk Machine Learning Blogs.
- Join the Splunk user group Slack channel.
- Sign up to learn more via Splunk Education. We recommend the Splunk course on Analytics and Data Science once you have mastered the fundamentals.
- Be part of the conversation on the Splunk Community page.
- Learn about new machine learning algorithms from the Splunk open source community, and help fellow users of the toolkit by joining the Splunk Community for MLTK on GitHub.
- If you are building a custom app using the Machine Learning Toolkit and want to install it in your cloud environment, see About vetting for Splunk.
Cloud.
Troubleshooting

Create user facing messages

The Splunk Machine Learning Toolkit ships with utilities to make logging and user-facing errors easier to manage.

The Splunk Machine Learning Toolkit relies on a different Python interpreter than the interpreter shipped with Splunk Enterprise.

To begin, import and create a messages logger as follows:

```python
from cexc import get_messages_logger
messages = get_messages_logger()
```

Once completed, you can add user facing messages as shown in the following code blocks:

```python
some_variable = 'hello there'
messages.warn('Message of your choosing: {}'.format(some_variable))
```

This code produces the search warning in the following example:

![Warning Example](image1)

You can similarly produce error messages:

```python
some_variable = 'hello there'
messages.error('Message of your choosing: {}'.format(some_variable))
```

This code produces the error message in the following example:

![Error Example](image2)
Use custom logging

The Splunk Machine Learning Toolkit ships with utilities to make logging easier to manage.

The Splunk Machine Learning Toolkit relies on a different Python interpreter than the interpreter shipped with Splunk Enterprise.

To begin, import a logger. For more detailed logging, you can use a logger with a custom name as in the following example:

```python
from cexc import get_logger
logger = get_logger('MyCustomLogging')
logger.warn('warning!')
logger.error('error!')
logger.debug('info!')
```

The logger messages are logged to `$SPLUNK_HOME/var/log/mlspl.log`.

Along with the name provided in `get_logger`, the function, in this case the `__init__` method, is also recorded:

```
```

When all else fails, the best place to look is `search.log`. If you get stuck, ask questions and get answers through community support at Splunk Answers.

Adding Python 3 libraries

Users on this version or above of the Machine Learning Toolkit have the option to add Python 3 libraries as a means to enhance their machine learning efforts.

Support is not offered on the use of or upgrade of any Python 3 libraries added to
your Splunk platform instance. Any upgrade to MLTK or the PSC add-on will overwrite any Python library changes.

Follow these steps to add a Python 3 library to your instance of the MLTK:

2. Navigate to https://repo.anaconda.com/pkgs/ to check the list of packages supported through Anaconda. You can only add packages listed on this site.
3. In GitHub, choose the package you need and add it in package.txt.
4. Specify the version of the package in package.txt. The latest version is selected by default.
5. Run bash repack.sh to create the environment and install the package within the environment.
6. When the repacking is complete, run the bash build.sh script which creates a .tgz file for the PSC add-on. On Windows, run a build.psl script.
7. In your Splunk platform instance (not in the Splunk CLI or web installer) extract the .tgz file.

The final .tgz app stores in the build directory.

Support for the ML-SPL API

Support for the ML-SPL API is available through several channels:

• Ask questions and get answers through community support at Splunk Answers.
• Join the Splunk user group Slack channel.
• Learn about new machine learning algorithms from the Splunk open source community, and help fellow users of the toolkit by joining the Splunk Community for MLTK on GitHub.
• If you have a support contract, submit a case using the Splunk Support Portal.
• For general Splunk platform support, see the Splunk Support Programs page.
Release notes

Known issues

Here are the known issues in each version of the Splunk Machine Learning Toolkit ML-SPL API:

Version 5.0.0

No known issues for version 5.0.0 of the ML-SPL API. Use the following support resources if you encounter an issue.

For custom algorithm and PSC version dependencies, see Custom algorithm and PSC version dependencies.

- Ask questions and get answers through community support at Splunk Answers.
- If you have a support contract, submit a case using the Splunk Support Portal.
- For general Splunk platform support, see the Splunk Support Programs page.

Version 4.5.0

No known issues for version 4.5.0 of the ML-SPL API. Use the following support resources if you encounter an issue.

For custom algorithm and PSC version dependencies, see Custom algorithm and PSC version dependencies.

- Ask questions and get answers through community support at Splunk Answers.
- If you have a support contract, submit a case using the Splunk Support Portal.
- For general Splunk platform support, see the Splunk Support Programs page.
Version 4.4.2

No known issues for version 4.4.2 of the ML-SPL API. Use the following support resources if you encounter an issue.

For custom algorithm and PSC version dependencies, see Custom algorithm and PSC version dependencies.

- Ask questions and get answers through community support at Splunk Answers.
- If you have a support contract, submit a case using the Splunk Support Portal.
- For general Splunk platform support, see the Splunk Support Programs page.

Version 4.4.1

No known issues for version 4.4.1 of the ML-SPL API. Use the following support resources if you encounter an issue.

For custom algorithm and PSC version dependencies, see Custom algorithm and PSC version dependencies.

- Ask questions and get answers through community support at Splunk Answers.
- If you have a support contract, submit a case using the Splunk Support Portal.
- For general Splunk platform support, see the Splunk Support Programs page.

Version 4.4.0

No known issues for version 4.4.0 of the ML-SPL API. Use the following support resources if you encounter an issue.

For custom algorithm and PSC version dependencies, see Custom algorithm and PSC version dependencies.

- Ask questions and get answers through community support at Splunk Answers.
- If you have a support contract, submit a case using the Splunk Support Portal.
• For general Splunk platform support, see the Splunk Support Programs page.

Version 4.3.0

No known issues for version 4.3.0 of the ML-SPL API. Please make use of the following support resources should you encounter an issue.

• Ask questions and get answers through community support at Splunk Answers.
• If you have a support contract, submit a case using the Splunk Support Portal.
• For general Splunk platform support, see the Splunk Support Programs page.

Specific version dependencies

<table>
<thead>
<tr>
<th>MLTK Version</th>
<th>PSC Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.2</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.1</td>
<td>1.3</td>
</tr>
<tr>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.4</td>
<td>1.3</td>
</tr>
<tr>
<td>3.3</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.2</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Linux 32-bit support is not available should you upgrade to version 1.4 of the Python for Scientific Computing add-on.

Version 4.2.0

No known issues for version 4.2.0 of the ML-SPL API. Please make use of the following support resources should you encounter an issue.

• Ask questions and get answers through community support at Splunk Answers.
• If you have a support contract, submit a case using the Splunk Support Portal.
• For general Splunk platform support, see the Splunk Support Programs page.

Specific version dependencies

<table>
<thead>
<tr>
<th>MLTK Version</th>
<th>PSC Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>1.3 or 1.4</td>
</tr>
<tr>
<td>4.1</td>
<td>1.3</td>
</tr>
<tr>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.4</td>
<td>1.3</td>
</tr>
<tr>
<td>3.3</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.2</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Linux 32-bit support is not available should you upgrade to version 1.4 of the Python for Scientific Computing add-on.

Version 4.1.0

No known issues for version 4.1.0 of the ML-SPL API. Please make use of the following support resources should you encounter an issue.

• Ask questions and get answers through community support at Splunk Answers.
• If you have a support contract, submit a case using the Splunk Support Portal.
• For general Splunk platform support, see the Splunk Support Programs page.

Specific version dependencies

<table>
<thead>
<tr>
<th>MLTK Version</th>
<th>PSC Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>1.3</td>
</tr>
<tr>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.4</td>
<td>1.3</td>
</tr>
<tr>
<td>3.3</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.2</td>
<td>1.2 or 1.3</td>
</tr>
</tbody>
</table>
No known issues for version 4.0.0 of the ML-SPL API. Please make use of the following support resources should you encounter an issue.

- Ask questions and get answers through community support at Splunk Answers.
- If you have a support contract, submit a case using the Splunk Support Portal.
- For general Splunk platform support, see the Splunk Support Programs page.

Specific version dependencies

<table>
<thead>
<tr>
<th>MLTK Version</th>
<th>PSC Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.4</td>
<td>1.3</td>
</tr>
<tr>
<td>3.3</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.2</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Version 3.4.0

Description

If you have written any custom algorithms that rely on the PSC libraries, upgrading to the new version of the PSC library (version 1.3) will impact those algorithms. You will need to re-train any models (re-run the search that used the `fit` command) using those algorithms after you upgrade PSC.

Specific version dependencies

<table>
<thead>
<tr>
<th>MLTK Version</th>
<th>PSC Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>1.3</td>
</tr>
<tr>
<td>3.3</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>MLTK Version</td>
<td>PSC Version</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.2</td>
<td>1.2 or 1.3</td>
</tr>
<tr>
<td>3.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>