When the Splunk App for Anomaly Detection is deployed on Splunk Enterprise, the Splunk platform sends aggregated usage data to Splunk Inc. ("Splunk") to help improve the Splunk App for Anomaly Detection in future releases. For information about how to opt in or out and how the data is collected, stored, and governed, see Share data in Splunk Enterprise.
What data is collected
The Splunk App for Anomaly Detection collects the following basic usage information:
Component | Description | Example |
---|---|---|
app.session.schedule_clicked
|
Information entered in the "Schedule" modal in the Job Dashboard. | { component: app.session.schedule_clicked data: { app: Splunk_App_for_Anomaly_Detection page: start rowData: { alertExpiresTimeUnit: h alertExpiresValue: 24 cronSchedule: description: got5 milk? emailTo: wdeaderick@splunk.com name: got5 milk? search: | inputlookup kpi.csv | dedup _time | sort _time | fit StateSpaceForecast input period=24 as preds | anomconfidences field_name=input pred_name=preds conf_name=anomConf | eval thresh = 0.878 | eval isOutlier = if(anomConf >= thresh, 1, 0) | anomintervals field_name=input conf_name=anomConf anom_name=isOutlier | table _time, input, isOutlier, anomConf } source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: b83a31f5-1028-6ca8-dac6-94c2985e0caa experienceID: 5efc3c69-0a78-611b-7c34-c641e2597d80 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678991871 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.manage_alert_clicked
|
When a user clicks "Manage alert" in Anomaly app. | { "optInRequired": 3, "version": "4", "experienceID": "dd4a1aa8-13ba-84dc-2386-0de9174cb1d9", "timestamp": 1678237020, "visibility": "anonymous,support", "userID": "3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc", "deploymentID": "c551ac66-1d97-5dc7-98ac-634bcc99ebee", "component": "app.session.manage_alert_clicked", "splunkVersion": "9.0.3", "eventID": "84ddf59b-5c41-1bca-03c9-490c973dfafa", "data": { "app": "Splunk_App_for_Anomaly_Detection", "page": "start", "rowData": { "numOfAnomConditionValue": "1", "confConditionSymbol": ">=", "confConditionValue": "0.82", "alertExpiresTimeUnit": "h", "alertExpiresValue": "24", "cronSchedule": "15 * * * *", "description": "Tel test2 desc", "search": "| inputlookup kpi.csv \n| dedup _time\n| sort _time\n| fit StateSpaceForecast input period=24 as preds\n| anomconfidences field_name=input pred_name=preds conf_name=anomConf\n| eval thresh = 0.878\n| eval isOutlier = if(anomConf >= thresh, 1, 0)\n| anomintervals field_name=input conf_name=anomConf anom_name=isOutlier\n| table _time, input, isOutlier, anomConf", "emailMsg": "The alert condition was triggered.", "name": "Tel test2", "emailSubject": "Splunk Alert: Tel test2", "emailTo": "dchang@splunk.com", "numOfAnomConditionSymbol": ">=" }, "source": "UI Telemetry" } } |
app.session.app_go_to_tab
|
The tab ("Job Dashboard" or "Create a New Job") to which the user changed. | { component: app.session.new_job_go_to_tab data: { activePanelId: Create Anomaly Job app: Splunk_App_for_Anomaly_Detection page: start source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: d6e4950f-2806-a4f2-82bb-6f4268372b7f experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678908071 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.field_selected
|
The name of the field in the user's data that was selected for anomaly detection. | { component: app.session.field_selected data: { app: Splunk_App_for_Anomaly_Detection field: ts15 page: start source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 198d7451-bbcc-815e-513a-5a9fd7a429d6 experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678914715 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.alert_trigger_saved
|
The information that evaluates the detected anomalies against the alerting conditions to determine whether or not an email should be sent. | { component: app.session.alert_trigger_saved data: { app: Splunk_App_for_Anomaly_Detection data: { action.email.mailserver: mail.splunk.com action.email.message.alert: The alert condition was triggered. action.email.subject: Splunk Alert: Tel test2 action.email.to: dchang@splunk.com actions: email alert.expires: 24h alert_condition: | delta isOutlier as outlierDelta | eval isFirstOutlier=if(outlierDelta == 1, 1, 0) | where isFirstOutlier == 1 | eventstats count as outlierCount | sort 1 anomConf desc | stats min(anomConf) as minAnomConf by outlierCount | search outlierCount >= 1 AND minAnomConf >= 0.82 alert_type: custom is_scheduled: true search: | inputlookup kpi.csv | dedup _time | sort _time | fit StateSpaceForecast input period=24 as preds | anomconfidences field_name=input pred_name=preds conf_name=anomConf | eval thresh = 0.878 | eval isOutlier = if(anomConf >= thresh, 1, 0) | anomintervals field_name=input conf_name=anomConf anom_name=isOutlier | table _time, input, isOutlier, anomConf } name: Tel test2 page: start source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 39b03015-8009-841e-03d4-e9231847ecb3 experienceID: dd4a1aa8-13ba-84dc-2386-0de9174cb1d9 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678237006 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.new_job_go_to_tab
|
The tab ("Job Dashboard" or "Create a New Job") to which the user changed. | { component: app.session.new_job_go_to_tab data: { activePanelId: Create Anomaly Job app: Splunk_App_for_Anomaly_Detection page: start source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: d6e4950f-2806-a4f2-82bb-6f4268372b7f experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678908071 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.schedule_saved
|
The scheduling details that the user entered for the Job execution. | { component: app.session.schedule_saved data: { app: Splunk_App_for_Anomaly_Detection data: { cron_schedule: */5 * * * * } page: start source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 9ab7237b-4f3b-7b3c-22c8-155256e2c18c experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678919796 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.new_job_saved
|
Saving of a new job in the app. | { component: app.session.new_job_saved data: { app: Splunk_App_for_Anomaly_Detection jobFormDetails: [ { label: Job Name value: got5 milk? } { label: Job Description value: got5 milk? } ] page: start search: | inputlookup kpi.csv | dedup _time | sort _time | fit StateSpaceForecast input period=24 as preds | anomconfidences field_name=input pred_name=preds conf_name=anomConf | eval thresh = 0.878 | eval isOutlier = if(anomConf >= thresh, 1, 0) | anomintervals field_name=input conf_name=anomConf anom_name=isOutlier | table _time, input, isOutlier, anomConf source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 34312936-ed61-0eb1-fe2a-e88d62e1897d experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678908197 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.delete_job_clicked
|
User deleted a job. | { component: app.session.delete_job_clicked data: { app: Splunk_App_for_Anomaly_Detection page: start rowData: { alertExpiresTimeUnit: h alertExpiresValue: 24 cronSchedule: description: got4 milk? emailTo: name: got4 milk? search: | inputlookup kpi.csv | dedup _time | sort _time | fit StateSpaceForecast input period=24 as preds | anomconfidences field_name=input pred_name=preds conf_name=anomConf | eval thresh = 0.878 | eval isOutlier = if(anomConf >= thresh, 1, 0) | anomintervals field_name=input conf_name=anomConf anom_name=isOutlier | table _time, input, isOutlier, anomConf } source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 87e8cbd2-58c3-e775-b6cc-9df8d3b4cc90 experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678910922 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.detect_anomalies_clicked
|
User clicked on the "Detect Anomalies" button to initiate anomaly detection. | { component: app.session.detect_anomalies_clicked data: { app: Splunk_App_for_Anomaly_Detection page: start search: | inputlookup kpi.csv | dedup _time | sort _time | table _time input | fit AutoAnomalyDetection input source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: c2d959ca-b930-6ccc-5ec9-cf747fbd06b6 experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678908083 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.sensitivity_saved
|
The sensitivity value (low, medium, or high) selected by the user upon operationalization of the AD search. | { [ component: app.session.sensitivity_saved data: { [ app: Splunk_App_for_Anomaly_Detection page: start sensitivity: 2 source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 42ea2afb-57c6-326c-dfcf-2b0504856947 experienceID: ffc7e5a5-44dc-92ec-ffbd-e34b1dae7a62 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1677867058 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.create_job_open_in_search_clicked
|
User clicked on the button to open the SPL query in search from within the "Create Job" dialog. | { component: app.session.create_job_open_in_search_clicked data: { app: Splunk_App_for_Anomaly_Detection page: start search: | inputlookup kpi.csv | dedup _time | sort _time | fit StateSpaceForecast input period=24 as preds | anomconfidences field_name=input pred_name=preds conf_name=anomConf | eval thresh = 0.6681 | eval isOutlier = if(anomConf >= thresh, 1, 0) | anomintervals field_name=input conf_name=anomConf anom_name=isOutlier | table _time, input, isOutlier, anomConf source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 87877205-355b-f3f8-2c9e-30bda02fc50e experienceID: ffc7e5a5-44dc-92ec-ffbd-e34b1dae7a62 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1677867086 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.view_spl_clicked
|
User clicked on the button to open the SPL query in search from the main AD workflow UI. | { component: app.session.view_spl_clicked data: { app: Splunk_App_for_Anomaly_Detection page: start search: | inputlookup kpi.csv | dedup _time | sort _time | fit StateSpaceForecast input period=24 as preds | anomconfidences field_name=input pred_name=preds conf_name=anomConf | eval thresh = 0.6681 | eval isOutlier = if(anomConf >= thresh, 1, 0) | anomintervals field_name=input conf_name=anomConf anom_name=isOutlier | table _time, input, isOutlier, anomConf source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: 0e7f77ee-a5ad-a78b-0d7d-85079cd7265e experienceID: ffc7e5a5-44dc-92ec-ffbd-e34b1dae7a62 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1677867088 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.delete_job_successful
|
Deleting a job was successful. | { component: app.session.delete_job_successful data: { app: Splunk_App_for_Anomaly_Detection page: start rowData: { alertExpiresTimeUnit: h alertExpiresValue: 24 cronSchedule: description: got4 milk? emailTo: name: got4 milk? search: | inputlookup kpi.csv | dedup _time | sort _time | fit StateSpaceForecast input period=24 as preds | anomconfidences field_name=input pred_name=preds conf_name=anomConf | eval thresh = 0.878 | eval isOutlier = if(anomConf >= thresh, 1, 0) | anomintervals field_name=input conf_name=anomConf anom_name=isOutlier | table _time, input, isOutlier, anomConf } source: UI Telemetry } deploymentID: c551ac66-1d97-5dc7-98ac-634bcc99ebee eventID: c7c9a89f-40dd-cbfa-d47f-84909faf0cfd experienceID: e3567a53-e173-e2df-2d85-e4911b77d2b2 optInRequired: 3 splunkVersion: 9.0.3 timestamp: 1678910922 userID: 3dd53389b7530de43e28ba58dead9cda506df188cf348f24c5984be45bcbd3bc version: 4 visibility: anonymous,support } |
app.session.delete_model_artifact_successful
|
Deleting model artifacts associated with a job that was deleted was successful. | { component: app.session.delete_model_artifact_successful data: { app: Splunk_App_for_Anomaly_Detection cronSchedule: page: start rowData: { alertExpiresTimeUnit: h alertExpiresValue: 24 } source: UI Telemetry } deploymentID: 821a4186-5c1e-5c26-bc39-355b7a6d8559 eventID: a8174b63-e49c-ffc8-a560-a87ce2bcdcf4 experienceID: 079cf05d-ff0a-cf56-09ed-61499468e16b optInRequired: 3 splunkVersion: 9.0.1 timestamp: 1680287440 userID: e0c7c133de97dccf5e30df7e77afb4c27de23536979fa897c36534b7c2b36fab version: 4 visibility: anonymous,support } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
The data health check result. For example, if data contains missing values, or timestamps are unevenly spaced. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 3 message: Health check score: 2; No data quality issues detected. } deploymentID: a2cbe2e4-ae0e-5dd1-9e15-af9aeff49113 eventID: 7755BDFD-3BD5-4FA7-9D07-8EE044B378C3 executionID: DEB3F0F8-3319-4B64-807E-581EE9BD2DF4 optInRequired: 3 timestamp: 1678880187 type: aggregate visibility: [ ] } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
The number of anomalies/ anomalous intervals detected in the data. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 5 message: 1 anomalous interval(s) found. } deploymentID: db49a47c-7c97-544e-9236-f5e2f7547600 eventID: C09FA2A1-A9F4-498F-9DD4-D6050FFACD00 executionID: 46D024B4-E1EA-4394-BB47-966D92C731C0 optInRequired: 3 timestamp: 1678895466 type: aggregate visibility: [ ] } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
The length of the seasonal/periodic component (if one is found) in the data. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 1 message: Detected seasonal period length: 1 } deploymentID: a676d989-ba85-599f-91c2-9cb0c16722ed eventID: 9A7BBCAC-B0CE-48E5-A4FD-52FE37763AB2 executionID: 15BA56B4-06DD-4420-A86A-D2BA2496EA1B optInRequired: 3 timestamp: 1678876382 type: aggregate visibility: [ ] } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
Whether the user is running the app with Splunk preinstalled dataset or with their own data. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 1 message: Using our included inputlookup data } deploymentID: a2cbe2e4-ae0e-5dd1-9e15-af9aeff49113 eventID: DA0A3667-BF04-4427-8F77-339AB11079A2 executionID: DEB3F0F8-3319-4B64-807E-581EE9BD2DF4 optInRequired: 3 timestamp: 1678880187 type: aggregate visibility: [ anonymous ] } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
The top and bottom 5 anomaly confidence scores found in the data. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 1 message: Top 5 anomConfs: [0.9433 0.8127 0.7784 0.7269 0.7113] } deploymentID: a2cbe2e4-ae0e-5dd1-9e15-af9aeff49113 eventID: F939CAC7-E468-4490-9915-BA448068533D executionID: DEB3F0F8-3319-4B64-807E-581EE9BD2DF4 optInRequired: 3 timestamp: 1678880187 type: aggregate visibility: [ ] } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
How long our custom algorithm took to run. Encompasses all backend computation other than the SPL query execution time. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 1 message: Total execution time in seconds for `fit AutoAnomalyDetection` call: 0.5578451156616211 } deploymentID: a2cbe2e4-ae0e-5dd1-9e15-af9aeff49113 eventID: 813454ED-EDF5-488E-8BE2-00E3B64F5D01 executionID: A2D51B94-F483-4367-AB4A-FA92B6DC5597 optInRequired: 3 timestamp: 1678972625 type: aggregate visibility: [ ] } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
The data resolution. The spacing between timestamps, in number of seconds. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 1 message: Data resolution: 3600.0 seconds. } deploymentID: a2cbe2e4-ae0e-5dd1-9e15-af9aeff49113 eventID: 813454ED-EDF5-488E-8BE2-00E3B64F5D01 executionID: A2D51B94-F483-4367-AB4A-FA92B6DC5597 optInRequired: 3 timestamp: 1678972625 type: aggregate visibility: [ ] } |
app.Splunk_App_for_Anomaly_Detection.anomalyapp
|
Range of the data values. Number of orders of magnitude between highest and lowest value. | { app: Splunk_App_for_Anomaly_Detection component: app.Splunk_App_for_Anomaly_Detection.anomalyapp data: { count: 1 message: Data varies over 0.5844700114060526 orders of magnitude. } deploymentID: a2cbe2e4-ae0e-5dd1-9e15-af9aeff49113 eventID: 813454ED-EDF5-488E-8BE2-00E3B64F5D01 executionID: A2D51B94-F483-4367-AB4A-FA92B6DC5597 optInRequired: 3 timestamp: 1678972625 type: aggregate visibility: [ ] } |
Splunk App for Anomaly Detection workflow | Support for the Splunk App for Anomaly Detection |
This documentation applies to the following versions of Splunk® App for Anomaly Detection: 1.0.0
Feedback submitted, thanks!