Splunk® Machine Learning Toolkit

User Guide

This documentation does not apply to the most recent version of Splunk® Machine Learning Toolkit. For documentation on the most recent version, go to the latest release.

What's new

Here's what's new in each version of the Splunk Machine Learning Toolkit:

Version 5.0.0

Features and improvements

  • Python 3 now serves as the basis for the Python for Scientific Computing (PSC) add-on. This version is required in order to use MLTK version 5.0.0. Use our quick reference document to ensure you are running the correct version combinations of MLTK, the PSC add-on, and Splunk Enterprise. See Machine Learning Toolkit version dependencies.
  • Introduction of the new Smart Outlier Detection Assistant. This Assistant offers enhanced numeric anomaly detection for users with little to no SPL knowledge, and leverages the DensityFunction algorithm.
  • Gain familiarity with the new Smart Outlier Detection Assistant with two new Showcase examples. Use these Showcases to click through the updated user interface and view the outlier detection parameter options prior to working with your own data.
  • The Showcase of end-to-end MLTK Assistant examples has been updated with an improved interface and new filtering options. See, Machine Learning Toolkit Showcase.
  • Energy distance is now available as a statstest scoring method.
  • The regression algorithm System Identification is now available.
  • A new custom visualization called Distribution Plot is now available. Use Distribution Plot to show the output of the DensityFunction algorithm.
  • The Density Function algorithm now supports the random_state parameter.
  • The StateSpaceForecast algorithm now supports the wildcard (*) character.
  • Users may begin seeing a security warning dialog box when calling the fit command. For more details including how to turn off this warning, see Why am I seeing a security warning with the fit command.
  • A quick reference document has been created so you can easily see which MLTK algorithms support the ML-SPL commands of fit, apply, summary, and partial fit. See Algorithm support of key ML-SPL commands quick reference.
  • The handy cheat-sheet for all ML-SPL commands and machine learning algorithms available in the MLTK has been updated. View and download the Machine Learning Toolkit Quick Reference Guide in English or Japanese.

Version 4.5.0

Features and improvements

  • This version of the MLTK offers the majority of the features of MLTK version 5.0.0, but is compatible with Python versions 2.x and Splunk Enterprise versions 7.x. For specific version dependencies, see Machine Learning Toolkit version dependencies.

The random_state parameter of the DensityFunction anomaly detection algorithm is only available in MLTK version 5.0.0 and above. This parameter is not supported in version 4.5.0 of the MLTK.

Version 4.4.2

Features and improvements

Version 4.4.1

Features and improvements

  • Addressed an issue preventing models created in version 4.3.0 of the MLTK using the DensityFunction algorithm from loading into version 4.4.0 of the MLTK.

Version 4.4.0

Features and improvements

  • The Smart Forecasting Assistant now supports multivariate forecasting. For highlights of this enhancement, see the Smart Forecasting Assistant document.
  • A new Smart Forecasting Showcase example steps you through the forecasting of app expenses from multiple variable.
  • Analysis of Variance (Anova) is now available as a statstest score command option.
  • The Density Function algorithm now supports multiple thresholds. Multiple thresholds enable you to run your different threshold values all at once rather than one by one, getting all your outliers returned faster.
  • The Density Function algorithm now supports min and max values in the summary command.
  • The full_sample parameter is now available for use with the Density Function algorithm.
  • The show_options parameter is now available for use with the Density Function algorithm.
  • New Experiments created using either the Predict Categorical Fields or Predict Numeric Fields Assistants now default to a 70-30 training and testing data split. The previous default split was 50-50.
  • MLTK dashboards now support dark theme. For more information, see Dashboards and Visualizations.
  • To increase the ease of use and clarity of content, version 4.4.0 of the MLTK documentation has an improved chapter and topic order, as well as updated chapter and topic naming. Reach out to an MLTK support resource in the event you are unable to find the content you're looking for. For support options, see Support for the Machine Learning Toolkit.

Version 4.3.0

Features and improvements

  • Introduction of the new Smart Forecasting Assistant. This Assistant offers enhanced time-series analysis for users with little to no SPL knowledge, and leverages the StateSpaceForecasting algorithm.
  • Gain familiarity with the new Smart Forecasting Assistant with three new Showcase examples. Use these Showcases to click through the updated user interface and view forecast parameter options prior to working with your own data.
  • Introduction of the NPR algorithm for feature extraction.
  • A new document covering methods for preparing your data for machine learning is now available.
  • The sample parameter is now available for use with the DensityFunction algorithm.
  • Time-saving MLTK macros are now documented for your review and use.

In order to save models, users need the upload_lookup_files capability included in their role.

Version 4.2.0

Features and improvements

Version 4.1.0

Features and improvements

Version 4.0.0

Features and improvements

Version 3.4.0

Features and improvements

  • Version 1.3 of the Python for Scientific Computing add-on is now available in Splunkbase. Upgrading to version 3.4 of the MLTK requires upgrading to PSC version 1.3 .
  • Introduction of the MLPClassifier algorithm. Accessing this algorithm requires an upgrade to PSC version 1.3.
  • Introduction of Boxplot Chart to the search visualization options.
  • Models created within the Experiments framework can now be published and more easily used outside of the MLTK environment.
  • For bug fixes, see Fixed issues.

Upgrading to version 3.4.0 of the MLTK requires upgrading to version 1.3 of the Python for Scientific Computing add-on. Two previous versions of the MLTK (3.2.0 and 3.3.0) will successfully operate on version 1.2 or 1.3 of the PSC add-on. However, users cannot access new features in the 3.4.0 MLTK without updating to that version.

Version 3.3.0

Features and improvements

Version 3.4.0 of the MLTK will require an update to Version 1.3 of Python for Scientific Computing. The release for the MLTK 3.4.0 will coincide with the availability of PSC 1.3 in Splunkbase.

Version 3.2.0

Features and improvements

  • Introduction of the Experiment Management Framework. This framework ties the experiment, along with any alerts or scheduled trainings, together. Users can now see which alerts or scheduled trainings are assigned to any experiment, and which experiment has or has not undergone pre-processing steps. See Using the Splunk Machine Learning Toolkit and Experiments.
  • Relocation within the Machine Learning Toolkit of the previously free-standing Assistant module. This version of Assistants now lives under the Legacy tab of the MLTK bar. It is recommended that you do not create Models via this version of Assistants, and instead create Models via the Experiments Management Framework. Doing so will ensure that you can both:
    • Create Alerts and Scheduled Trainings on the saved Experiment
    • See Alerts and Scheduled Trainings organized by Experiment
  • The Splunk Machine Learning Toolkit version 3.2 does not support Splunk Enterprise version 6.4 or earlier.
  • For bug fixes, see Fixed issues.

Version 3.1.0

Features and improvements

  • The FieldSelector algorithm can now be used in the preprocessing panel. See FieldSelector in the Machine Learning Toolkit User Guide.
  • The maximum number of distinct values supported for categorical fields, formerly 100, can now be configured for both features fields and target fields.
  • The Splunk Machine Learning Toolkit has a new clustering algorithm:
  • For bug fixes, see Fixed issues.

Version 3.0.0

Features and improvements

Introduced a new interface for managing models. You can now easily see what types of models you have, inspect the settings of each model (such as which variables were used to train it), and view or update each model's sharing settings. For more information, see Manage models.

Version 2.4.0

Features and improvements

Version 2.3.0

Features and improvements

  • Entries in the "Load Existing Settings" tab are now unique per-user instead of being shared with all users. Entries created prior to version 2.3 will continue to be accessible by all users.
  • Two new algorithms have been added:
    • ACF (autocorrelation function)
    • PACF (partial autocorrelation function)
  • The Forecast Time Series Assistant now allows for the selection of the ARIMA forecasting algorithm. Additional panels have been added for inspecting properties unique to ARIMA models.

Version 2.2.1

This version contains bug fixes. See Fixed issues for details.

Version 2.2.0

Features and improvements

  • The preprocessing feature has been redesigned and is offered in the Predict Numeric Fields, Predict Categorical Fields, and Clustering Numeric Events assistants. See Preprocessing for information.
  • The ML-SPL API has been updated to make it easier for developers and partners to import custom algorithms in order to extend the capabilities of the Splunk Machine Learning Toolkit. See ML-SPL API Guide for information.

Version 2.1.0

Features and improvements

Enhancements to the Detect Numeric Outliers assistant:

  • You can now specify one or more fields to split by (up to 5). Specifying one or more split by fields enables you to see the values of the field you are analyzing grouped by the values of the split by fields in visualizations.
  • Enhanced visualizations including a new Data Distribution histogram that shows the number of data points within the threshold and the number of data points outside the threshold.

For more information, see Detect Numeric Outliers.

Version 2.0.1

The Downsampled Line Chart custom visualization now supports the same drilldown actions as the built-in Line Chart visualization.

Version 2.0.0

Features and improvements

  • The app has been renamed to "Machine Learning Toolkit."
  • New Cluster Numeric Events assistant that steps you through how to perform clustering on your own data. This assistant includes the ability to preprocess data by applying StandardScaler, PCA, or KernelPCA methods. See Cluster Numeric Events.
  • Updated examples for the Cluster Numeric Events showcase.
  • A streaming_apply setting has been added to the mlspl.conf file, which allows you to run the apply command on your indexers. For details, see Use your indexers to apply models.
  • The Predict Numeric Fields and Predict Categorical Fields assistants now support multiple algorithms.
  • A new visualization type has been added: Scatterplot matrix. This visualization is available in the Cluster Numeric Events assistant.
  • The Machine Learning Toolkit app has a walk-through tour and each assistant has its own walk-through tour.
  • A link to machine learning video tutorials has been added to the top menu bar and the Showcase page.
  • Tooltips have been added for the fields in each of the assistants.

Algorithms

  • The SGDClassifier algorithm is now supported. For details, see Algorithms.
  • The SGDRegressor algorithm is now supported. For details, see Algorithms.
  • The ARIMA algorithm is now supported. For details, see Algorithms.
  • The LogisticRegression algorithm supports a new parameter probabilities=<true|false>. For details, see Algorithms.
  • Summary support has been added to the RandomForestClassifier and RandomForestRegressor algorithms. For details, see Algorithms.
  • The BernoulliNB, GaussianNB, Birch, and StandardScaler algorithms support a new parameter partial_fit=<true|false>. For details, see Algorithms.

Version 1.3.0

Features and improvements

  • You can now create alerts within the Machine Learning Toolkit from some of the panels in the assistants. Alerts can be viewed under Scheduled Jobs > Alerts.
  • You can now schedule model training in the Predict Numeric Fields and Predict Categorical Fields assistants by clicking the icon on the right side of the Fit Model button.
Mlapp fitmodelscheduleicon.jpg
Schedules can be viewed under Scheduled Jobs > Scheduled Training.
  • The Training/Test split can now be set to a 100/0 split (no split).

Version 1.2.0

Features and improvements

  • The DecisionTreeClassifier and DecisionTreeRegressor algorithms are now supported. For details, see Algorithms.
  • The Detect Numeric Outliers assistant now includes an Include current point checkbox to support the "current" parameter of the streamstats command.
  • The Predict Numeric Fields assistant has an improved Actual vs. Predicted Line Chart, which replaces the Actual vs. Predicted Overlay.
  • Two macros in the Forecast Time Series assistant have been merged into one macro.
  • The max_features parameter of the RandomForestClassifier and RandomForestRegressor algorithms now accepts values with the float data type.
  • The Remove from history confirmation dialog box has been improved.
  • A basic framework has been implemented for displaying Bootstrap's modal dialog boxes in the Machine Learning Toolkit and Showcase UI.

Version 1.1.0

Features and improvements

  • The visualizations in the Cluster Events showcase have been updated.
  • The Predict Numeric Fields and Predict Categorical Fields assistants now allow you to enter wildcards in Fields to use for predicting. For example, to specify both the Packets Received and Packets Sent fields, enter "Packets*". Wildcards are case sensitive.
  • The Select All and Select None buttons on the Predict Numeric Fields and Predict Categorical Fields assistants have been moved inside the dropdown list.

Algorithms

  • The KernelRidge regression algorithm is now supported. For details, see Algorithms.

Bug fixes

The following bugs were fixed:

  • Changing the time range or search mode on assistant search bars will now re-run the search in the search bar, the same as the default Search page in Splunk Enterprise.
  • Custom visualizations will now display time stamps correctly when the event time differs from browser time.
  • Caching issues have been fixed, and the app no longer loads old versions of resources after an update.
  • Exit points in assistants now correctly have the same time range as that assistant's search bar

Version 1.0.0

This is the first release of the Machine Learning Toolkit and Showcase app.

Last modified on 20 November, 2019
Support for the Machine Learning Toolkit   Known issues

This documentation applies to the following versions of Splunk® Machine Learning Toolkit: 5.0.0


Was this topic useful?







You must be logged into splunk.com in order to post comments. Log in now.

Please try to keep this discussion focused on the content covered in this documentation topic. If you have a more general question about Splunk functionality or are experiencing a difficulty with Splunk, consider posting a question to Splunkbase Answers.

0 out of 1000 Characters