Splunk® Machine Learning Toolkit

User Guide

This documentation does not apply to the most recent version of Splunk® Machine Learning Toolkit. For documentation on the most recent version, go to the latest release.

Algorithm support of key ML-SPL commands quick reference

Use this quick reference to see which MLTK algorithms support the fit, apply, partial_fit, and summary commands. For additional details on each of these algorithms, see Algorithms in the Machine Learning Toolkit.

Anomaly Detection

Algorithm fit apply partial_fit summary
DensityFunction Y Y Y Y
LocalOutlierFactor Y N N N
OneClassSVM Y Y N N

Classifiers

Algorithm fit apply partial_fit summary
AutoPrediction Y Y N Y
BernoulliNB Y Y Y Y
DecisionTreeClassifier Y Y N Y
GaussianNB Y Y Y Y
GradientBoostingClassifier Y Y N Y
LogisticRegression Y Y N Y
MLPClassifier Y Y Y Y
RandomForestClassifier Y Y N Y
SGDClassifier Y Y Y Y
SVM Y Y N N

Clustering Algorithms

Algorithm fit apply partial_fit summary
Birch Y Y Y N
DBSCAN Y N N N
G-means Y Y N Y
K-means Y Y N Y
SpectralClustering Y N N N
X-means Y Y N Y

Cross-validation

Algorithm fit apply partial_fit summary
K-fold cross validation Y N N N

Feature Extraction

Algorithm fit apply partial_fit summary
FieldSelector Y Y N Y
HashingVectorizer Y N N N
ICA Y Y N N
KernelPCA Y Y N N
NPR Y Y N Y
PCA Y Y N Y
TFIDF Y Y N N

Preprocessing (Prepare Data)

Algorithm fit apply partial_fit summary
Imputer Y Y N Y
RobustScaler Y Y N Y
StandardScaler Y Y Y Y

Regressors

Algorithm fit apply partial_fit summary
AutoPrediction Y Y N Y
DecisionTreeRegressor Y Y N Y
ElasticNet Y Y N Y
GradientBoostingRegressor Y Y N Y
KernelRidge Y Y N N
Lasso Y Y N Y
LinearRegression Y Y N Y
RandomForestRegressor Y Y N Y
Ridge Y Y N Y
SGDRegressor Y Y Y Y
System Identification Y Y Y Y

Time Series Analysis

Algorithm fit apply partial_fit summary
ARIMA Y N N N
StateSpaceForecast Y Y Y Y

Utility Algorithms

Algorithm fit apply partial_fit summary
ACF Y N N N
PACF Y N N N
Last modified on 25 January, 2023
Managing algorithm permissions in the Splunk Machine Learning Toolkit   Configure algorithm performance costs

This documentation applies to the following versions of Splunk® Machine Learning Toolkit: 5.2.0, 5.2.1, 5.2.2, 5.3.0, 5.3.1, 5.3.3


Was this topic useful?







You must be logged into splunk.com in order to post comments. Log in now.

Please try to keep this discussion focused on the content covered in this documentation topic. If you have a more general question about Splunk functionality or are experiencing a difficulty with Splunk, consider posting a question to Splunkbase Answers.

0 out of 1000 Characters