Splunk® Machine Learning Toolkit

User Guide

Smart Clustering Assistant

The Smart Clustering Assistant enables machine learning outcomes for users with little to no SPL knowledge. This Assistant is built on the backbone of the Experiment Management Framework (EMF), offering enhanced clustering abilities. Use the Smart Clustering Assistant to see more clustering outcomes and better understand those outcomes over the Clustering Numeric Events Assistant. The Smart Clustering Assistant offers a guided workflow that moves through stages to load data, build your model, and put that model into production. Each stage offers a data preview and visualization panel.

This Assistant leverages the K-means algorithm which persists a model using the fit command that can be used with the apply command. K-means is computationally faster than most other clustering algorithms. To learn more about the Smart Clustering Assistant algorithm, see K-means algorithm.

Smart Clustering Assistant Showcase

You can gain familiarity with this Assistant through the MLTK Showcase, accessed under its own tab. The Smart Clustering Showcase examples include:

  • Cluster Houses by Property Descriptions
  • Cluster Mortgage Loans

This image shows the landing page for the Machine Learning Toolkit Showcase page. The Cluster Events option is highlighted and pointing to the available examples for the Smart Clustering Assistant.

Click the name of any Smart Clustering Showcase to see this Assistant in action using pre-loaded test data and pre-selected clustering parameters.

Smart Clustering Assistant workflow

Move through the stages of Define, Learn, Review, and Operationalize to draw in data, build your model, and put that model into production.

  1. Select Smart Clustering from the Experiments landing page and the Create New Experiment button in the top right. This image shows the Machine Learning Toolkit and the view under the Experiments tab. The Experiment types are displayed from which a user can create a new Experiment of that type. The new Experiment type of Smart Clustering Assistant is highlighted.
  2. Enter an Experiment Title, and optionally add a Description.
  3. Click Create to move into the Assistant interface.

Define stage

Use the Define stage to select and preview the data you want to use for the clustering.

  1. Select your data. You have three options to pull data into the Assistant and you can pull data in from anywhere in the Splunk platform.
    Datasource option Description
    Search Use if your datasource is a stored dataset. You can use the Search bar to modify your dataset data in advance of using that data within the Learn step.
    Datasets Use to find any data you have ingested into Splunk, as well as any datasets that ship with Splunk Enterprise and the Machine Learning Toolkit. You can filter by type to find your preferred data faster.
    Metrics Use to find any metrics data you have gathered and stored as a custom index type without the need to write any SPL. This index might include data from systems including hosts, network devices, web servers, and SaaS systems. To learn more, see About the Splunk Metrics Workspace.
  2. Once data is selected, the Data Preview and Visualization tabs populate. This image shows the Define stage of the Assistant. In this example, data has been added to the Assistant. This populates the mid-page tabs for Data Preview and Visualization.
  3. Choose a time-range to narrow down the data time frame. The default setting of All time can be changed to suit your needs.
  4. When you are finished selecting your data, click Next in the top right, or Learn from the left-hand menu to move on to the next stage of the Assistant.

Learn stage

Use the Learn stage to build your clustering model. The Learn stage includes sections from which you can see the ingested data, add one or more data preprocessing steps, and pick the fields to cluster and number of clusters to generate.

  1. Use the +Add preprocessing section to select from one of three preprocessing algorithms.You can add multiple preprocessing steps depending on your machine learning needs. For more detailed information on data preprocessing, see Getting your data ready for machine learning.
    Refer to the following table for information on the preprocessing algorithm options and the available fields for each of those algorithms.
    Preprocessing algorithm Field name Field description
    PCA Fields to preprocess Select the fields to preprocess.
    Number of new fields to create Optional field. Specify the number of principal components. K new fields will be created with the prefix "PC_".
    KernelPCA Fields to preprocess Select the fields to preprocess.
    Number of new fields to create Optional field. Specify the number of principal components. K new fields will be created with the prefix "PC_".
    Gamma Optional field. Kernel coefficient for the rbf kernel.
    Tolerance Optional field. Convergence tolerance. If 0, an optimal value is chosen using arpack.
    Max number of iterations Optional field. If not specified, an optimal value is chosen using arpack.
    StandardScaler Fields to preprocess Select the fields to preprocess. For each selected field a new field will be created with the prefix "SS_".
    Standardize Fields Select whether to center values with respect to the mean, scale them with respect to the standard deviation or both.
  2. Select which fields to cluster from the drop-down list. There is no limit to the number of fields you select. This image shows the Learn stage of the Smart Clustering Assistant. The  available fields you can use to cluster are highlighted.
  3. Input the number of clusters to generate.
  4. Use the Notes field to track parameter adjustments you make to your Smart Clustering Experiment. Refer back to notes to review which parameter combinations yield the best results.
  5. Select Find Clusters when ready.
  6. A summary of your selected settings appears at the top of the page summarizing the generated number of clusters from which fields. The Experiment is now in a Draft state, and the View History option is available. View History allows you to track any changes you make in the Learn stage.
  7. The SPL button is also available as a means to review the Splunk Search Processing Language being auto generated for you in the background as you work through the Assistant, or to fit the SPL in a new search tab.
  8. On the resulting Evaluate tab, view your settings in a 2D or 3D scatter plot. Use the X, Y, and Z axis drop-down list to populate the scatter plots.
    1. Examine these scatter plots by hovering over any point or by showing/ hiding clusters by hovering over cluster numbers left hand side legend.
    2. Clicking a specific data points opens a New Search screen for further data examination.
  9. The Evaluate tab also generates and displays the Silhouette score for the model. Silhouette score measures both the distance from the cluster centroid and distance between centroids. The Silhouette score ranges from -1 to +1 with a score closer to 1 indicating a better clustering configuration.

    A negative score might indicate you have selected the wrong fields to cluster by.

  10. When you are happy with your results, click Next in the top right, or Review from the left-hand menu to move on to the next stage of the Assistant.

Review stage

Use the Review stage to explore the resulting model based on the fields selected at the Learn stage. The Review panels give you the opportunity to assess your clustering results prior to putting the model into production.

  1. Use the available panels as follows:
    Panel name Description
    Number of Clusters Use the Number of Clusters panel to review the details of cluster points across all clusters or within an individual cluster. This panel offers two tables of data, one for All Cluster Details and the other for Points in All Clusters. Use the panel filter to change the view from All Clusters to that of any of the generated clusters.
    Intercluster Distance Matrix Use the Intercluster Distance Matrix panel to examine the relationship between the found clusters. The panel displays the average, maximum, and minimum distances. Scroll down to view and optionally filter a bar graph display of distances between found clusters. Hover over any bar within the graph to see the specific distance value. Use the panel filter to change the view from All Clusters to that of any of the generated clusters.
    Intracluster Distance Distribution Use the Intracluster Distance Distribution panel to set a distance from the centroid within a cluster to find outliers. A value must be selected in order to generate a visualization. Choose to enter a value into the open field or use the available slider. Click Set Distance once a value is chosen.
  2. Once a distance from centroid value is set you can use the panel filter to change the view from All Clusters to that of any of the generated clusters. Within the resulting visualization, hover over the cluster legend to limit the visualization to that cluster or hover over values within the visualization to view the specific distance value.
  3. Scroll down to see the Outlier Table for All Clusters. Use the icon beside the table name to open this view in a new tab.
  4. Navigate back to the Learn stage to make clustering adjustments or click Save and Next to continue. This image shows the Review stage of the Smart Clustering Assistant. The Save and Next button is highlighted.
  5. Clicking Save and Next generates a modal window that offers the opportunity to update the Experiment name or description. When ready, click Save.

Operationalize stage

The Operationalize stage provides publishing, alerting, and scheduled training in one place. Click Done to move to the Experiments listings page.

This image shows the Operationalize stage of the Assistant. Options on this page include Publish Outlier Models, Create Alert, Manage Alerts, Schedule Model Training, and View Scheduled Training Jobs. A green button labeled Done in the top right of the page is highlighted.

The Experiments listing page provides a place to publish, set up alerts, and schedule training for any of your saved Experiments across all Assistant types including Smart Clustering.

Learn more

To learn about implementing analytics and data science projects using Splunk platform statistics, machine learning, and built-in and custom visualization capabilities, see the Splunk 8.0 for Analytics and Data Science course.

Last modified on 08 September, 2023
Smart Outlier Detection Assistant   Smart Prediction Assistant

This documentation applies to the following versions of Splunk® Machine Learning Toolkit: 5.3.3, 5.4.0, 5.4.1

Was this topic useful?

You must be logged into splunk.com in order to post comments. Log in now.

Please try to keep this discussion focused on the content covered in this documentation topic. If you have a more general question about Splunk functionality or are experiencing a difficulty with Splunk, consider posting a question to Splunkbase Answers.

0 out of 1000 Characters