Manually instrument Node.js applications for Splunk Observability Cloud 🔗
Instrumenting applications automatically using the agent of the Splunk Distribution of OpenTelemetry JS covers most needs. Manually instrumenting your application is only necessary when, for example, you need to add custom attributes to spans or need to manually generate spans.
Note
Manual OTel instrumentation is fully compatible with Splunk automatic Node.js instrumentation and is fully supported by Splunk.
Custom traces 🔗
To send custom traces to Splunk Observability Cloud, add the required dependencies and configure tracing:
const { start } = require('@splunk/otel');
const opentelemetry = require('@opentelemetry/api');
start({
serviceName: 'my-service',
});
const tracer = opentelemetry.trace.getTracer('example-app', '0.1.0');
function randomNumber() {
return tracer.startActiveSpan('make-random', (span) => {
const result = Math.random() * 42;
span.setAttribute('random-result', result);
span.end();
return result;
});
}
setInterval(() => {
console.log(randomNumber());
}, 1000);
Note
For more examples of manual instrumentation, see Manual instrumentation in the OpenTelemetry official documentation.
Custom metrics 🔗
To send custom application metrics to Splunk Observability Cloud, add @opentelemetry/api
to your dependencies:
const { start } = require('@splunk/otel');
const { Resource } = require('@opentelemetry/resources');
const { metrics } = require('@opentelemetry/api');
// All fields are optional.
start({
// Takes preference over OTEL_SERVICE_NAME environment variable
serviceName: 'my-service',
metrics: {
// The suggested resource is filled in using OTEL_RESOURCE_ATTRIBUTES
resourceFactory: (suggestedResource: Resource) => {
return suggestedResource.merge(new Resource({
'my.property': 'xyz',
'build': 42,
}));
},
exportIntervalMillis: 1000, // default: 5000
// The default exporter used is OTLP over HTTP
endpoint: 'http://collector:4318',
},
});
const meter = metrics.getMeter('my-meter');
const counter = meter.createCounter('clicks');
counter.add(3);
Set up custom metric readers and exporters 🔗
You can provide custom exporters and readers using the metricReaderFactory
setting.
Caution
Usage of metricReaderFactory
invalidates the exportInterval
and endpoint
settings.
The following example shows how to provide a custom exporter:
const { start } = require('@splunk/otel');
const { PrometheusExporter } = require('@opentelemetry/exporter-prometheus');
const { OTLPMetricExporter } = require('@opentelemetry/exporter-metrics-otlp-http');
const { PeriodicExportingMetricReader } = require('@opentelemetry/sdk-metrics-base');
start({
serviceName: 'my-service',
metrics: {
metricReaderFactory: () => {
return [
new PrometheusExporter(),
new PeriodicExportingMetricReader({
exportIntervalMillis: 1000,
exporter: new OTLPMetricExporter({ url: 'http://localhost:4318' })
})
]
},
},
});
Select the type of aggregation temporality 🔗
Aggregation temporality describes how data is reported over time.
You can define two different aggregation temporalities:
AggregationTemporality.CUMULATIVE
: Cumulative metrics, such as counters and histograms, are continuously summed together from a given starting point, which in this case is set with the call tostart
. This is the default temporality.AggregationTemporality.DELTA
: Metrics are summed together relative to the last metric collection step, which is set by the export interval.
To configure aggregation temporality in your custom metrics, use AggregationTemporality
as in the example:
const { start } = require('@splunk/otel');
const { OTLPMetricExporter } = require('@opentelemetry/exporter-metrics-otlp-http');
const { AggregationTemporality, PeriodicExportingMetricReader } = require('@opentelemetry/sdk-metrics-base');
start({
serviceName: 'my-service',
metrics: {
metricReaderFactory: () => {
return [
new PeriodicExportingMetricReader({
exporter: new OTLPMetricExporter({
temporalityPreference: AggregationTemporality.DELTA
})
})
]
},
},
});
For more information on aggregation temporality, see https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/data-model.md#sums on GitHub.