Configure Helm for Kubernetes đź”—
After you’ve installed the Collector for Kubernetes, these are the available settings you can configure. Additionally, see also the advanced configuration options and Configure logs and events for Kubernetes.
Caution
The values.yaml file lists all supported configurable parameters for the Helm chart, along with a detailed explanation of each parameter. Review it to understand how to configure this chart.
The Helm chart can also be configured to support different use cases, such as trace sampling and sending data through a proxy server. See Examples of chart configuration for more information.
Configure the Kubernetes distribution đź”—
If applicable, use the distribution
parameter to provide information about the underlying Kubernetes deployment. This parameter allows the connector to automatically scrape additional metadata. The following options are supported:
aks
for Azure AKSeks
for Amazon EKSeks/fargate
for Amazon EKS with Fargate profilesgke
for Google GKE or Standard modegke/autopilot
for Google GKE or Autopilot modeopenshift
for Red Hat OpenShift
Apply the following to configure your distribution:
# aks deployment
--set distribution=aks,cloudProvider=azure
# eks deployment
--set distribution=eks,cloudProvider=aws
# eks/fargate deployment (with recommended gateway)
--set distribution=eks/fargate,gateway.enabled=true,cloudProvider=aws
# gke deployment
--set distribution=gke,cloudProvider=gcp
# gke/autopilot deployment
--set distribution=gke/autopilot,cloudProvider=gcp
# openshift deployment (openshift can run on multiple cloud providers, so cloudProvider is excluded here)
--set distribution=openshift
For example:
splunkObservability:
accessToken: xxxxxx
realm: us0
clusterName: my-k8s-cluster
distribution: gke
Configure Google Kubernetes Engine đź”—
Configure GKE Autopilot đź”—
To run the Collector in GKE Autopilot mode, set the distribution
option to gke/autopilot
:
distribution: gke/autopilot
Search for “Autopilot overview” on the Google Cloud documentation site for more information.
Note
GKE Autopilot doesn’t support native OpenTelemetry logs collection.
The Collector agent daemonset can have problems scheduling in Autopilot mode. If this happens, do the following to assign the daemonset a higher priority class to ensure that the daemonset pods are always present on each node:
Create a new priority class for the Collector agent:
cat <<EOF | kubectl apply -f - apiVersion: scheduling.k8s.io/v1 kind: PriorityClass metadata: name: splunk-otel-agent-priority value: 1000000 globalDefault: false description: "Higher priority class for the Splunk Distribution of OpenTelemetry Collector pods." EOF
Use the created priority class in the helm install/upgrade command using the
--set="priorityClassName=splunk-otel-agent-priority"
argument, or add the following line to your custom values.yaml:
priorityClassName: splunk-otel-agent-priority
GKE ARM support đź”—
The default configuration of the Helm chart supports ARM workloads on GKE. Make sure to set the distribution value to gke
:
distribution: gke
Configure Amazon Elastic Kubernetes Service Fargate đź”—
To run the Collector in the Amazon EKS with Fargate profiles, set the required distribution
value to eks/fargate
, as shown in the following example:
distribution: eks/fargate
Note
Fluentd and native OpenTelemetry logs collection are not automatically configured in EKS with Fargate profiles.
This distribution operates similarly to the eks
distribution, but with the following distinctions:
The Collector agent daemonset is not applied since Fargate does not support daemonsets. Any desired Collector instances running as agents must be configured manually as sidecar containers in your custom deployments. This includes any application logging services like Fluentd. Set
gateway.enabled
totrue
and configure your instrumented applications to report metrics, traces, and logs to the gateway<installed-chart-name>-splunk-otel-collector
service address. Any desired agent instances that would run as a daemonset should instead run as sidecar containers in your pods.- Since Fargate nodes use a VM boundary to prevent access to host-based resources used by other pods, pods are not able to reach their own kubelet. The cluster receiver for the Fargate distribution has two primary differences between regular
eks
to work around this limitation: The configured cluster receiver is deployed as a two-replica StatefulSet instead of a Deployment, and uses a Kubernetes Observer extension that discovers the cluster’s nodes and, on the second replica, its pods for user-configurable receiver creator additions.Using this observer dynamically creates the Kubelet Stats receiver instances that report kubelet metrics for all observed Fargate nodes. The first replica monitors the cluster with a
k8s_cluster
receiver, and the second cluster monitors all kubelets except its own (due to an EKS/Fargate networking restriction).The first replica’s Collector monitors the second’s kubelet. This is made possible by a Fargate-specific
splunk-otel-eks-fargate-kubeletstats-receiver-node
node label. The Collector ClusterRole foreks/fargate
allows thepatch
verb onnodes
resources for the default API groups to allow the cluster receiver’s init container to add this node label for designated self monitoring.
- Since Fargate nodes use a VM boundary to prevent access to host-based resources used by other pods, pods are not able to reach their own kubelet. The cluster receiver for the Fargate distribution has two primary differences between regular
Configure the deployment environment đź”—
If applicable, use the environment
parameter to specify an additional deployment.environment
attribute to be added to all telemetry data. This attribute helps Splunk Observability Cloud users investigate data coming from different sources separately. Example values include development
, staging
, and production
.
splunkObservability:
accessToken: xxxxxx
realm: us0
environment: production
Configure a cloud provider đź”—
If applicable, use the cloudProvider
parameter to provide information about your cloud provider. The following options are supported:
aws
for Amazon Web Servicesgcp
for Google Cloud Platformazure
for Microsoft Azure
To set your cloud provider and configure cloud.platform
for the resource detection processor, use:
--set cloudProvider={azure|gcp|eks|openshift}
For example:
splunkObservability:
accessToken: xxxxxx
realm: us0
clusterName: my-k8s-cluster
cloudProvider: aws
Activate AlwaysOn Profiling đź”—
AlwaysOn Profiling in Splunk APM continuously captures stack traces, helping you identify performance bottlenecks or issues in your code. Activating profiling lets your Kubernetes applications produce and forward this data to Splunk Observability Cloud for visualization.
The Collector ingests profiling data using the logs
pipeline.
Learn more at Splunk OpenTelemetry Zero Configuration Auto Instrumentation and Introduction to AlwaysOn Profiling for Splunk APM.
Set up profiling đź”—
You can activate profiling while installing the Collector for Kubernetes using the UI wizard, or by modifying your configuration files.
Profiling uses two main components: the Collector, responsible for receiving and exporting the profiling data to Splunk Observability Cloud, and the Operator, which auto-instruments applications so they can generate and emit traces along with profiling data.
There are two main scenarios:
Profiling using both Collector and Operator: The Operator auto-instruments your applications, which then send the profiling data to the Collector.
Profiling using only the Collector: You manually instrument your applications to generate profiling data, which is then sent directly to the Collector.
Activate profiling with the Collector and the Operator đź”—
To activate profiling with the Collector and the Operator, activate the Profiling option in the UI, or deploy the Helm chart with the following configuration:
For the Collector:
splunkObservability:
accessToken: CHANGEME
realm: us0
logsEnabled: true
profilingEnabled: true
For the Operator:
operator:
enabled: true
Additionally, deploy the cert-manager for the Operator if it hasn’t been already.
certmanager:
enabled: true
With the above configuration:
The Collector is set up to receive profiling data.
The Operator is deployed and auto-instruments applications based on target pod annotations, allowing these applications to generate profiling data.
Activate profiling only with the Collector đź”—
If you want to only use the Collector and have manually instrumented applications, ensure that splunkObservability.logsEnabled=true
and splunkObservability.profilingEnabled=true
is set in your configuration.
Caution
With this option, you need to manually set up instrumented applications to send profiling data directly to the Collector.
Provide tokens as a secret đź”—
Instead of having the tokens as clear text in the config file, you can provide them as a secret created before deploying the chart. See secret-splunk.yaml for the required fields.
secret:
create: false
name: your-secret
Add additional telemetry sources đź”—
Use the autodetect
configuration option to activate additional telemetry sources.
Set autodetect.prometheus=true
if you want the Collector to scrape Prometheus metrics from pods that have generic Prometheus-style annotations. Add the following annotations on pods to allow a fine control of the scraping process:
prometheus.io/scrape: true
: The default configuration scrapes all pods. If set tofalse
, this annotation excludes the pod from the scraping process.prometheus.io/path
: The path to scrape the metrics from. The default value is/metrics
.prometheus.io/port
: The port to scrape the metrics from. The default value is9090
.
If the Collector is running in an Istio environment, set autodetect.istio=true
to make sure that all traces, metrics, and logs reported by Istio are collected in a unified manner.
For example, use the following configuration to activate automatic detection of both Prometheus and Istio telemetry sources:
splunkObservability:
accessToken: xxxxxx
realm: us0
clusterName: my-k8s-cluster
autodetect:
istio: true
prometheus: true
Deactivate particular types of telemetry đź”—
By default, OpenTelemetry sends only metrics and traces to Splunk Observability Cloud and sends only logs to Splunk Platform. You can activate or deactivate any kind of telemetry data collection for a specific destination.
For example, the following configuration allows the Collector to send all collected telemetry data to Splunk Observability Cloud and the Splunk Platform if you’ve properly configured them:
splunkObservability:
metricsEnabled: true
tracesEnabled: true
logsEnabled: true
splunkPlatform:
metricsEnabled: true
logsEnabled: true
Configure Windows worker nodes đź”—
The Splunk Distribution of OpenTelemetry Collector for Kubernetes supports collecting metrics, traces, and logs (using OpenTelemetry native logs collection only) from Windows nodes. All Windows images are available in the quay.io/signalfx/splunk-otel-collector-windows
repository.
Use the following configuration to install the Helm chart on Windows worker nodes:
isWindows: true
image:
otelcol:
repository: quay.io/signalfx/splunk-otel-collector-windows
logsEngine: otel
readinessProbe:
initialDelaySeconds: 60
livenessProbe:
initialDelaySeconds: 60
If you have both Windows and Linux worker nodes in your Kubernetes cluster, you need to install the Helm chart twice. One of the installations with the default configuration set to isWindows: false
is applied on Linux nodes. The second installation with the values.yaml configuration (shown in the previous example) is applied on Windows nodes.
Deactivate the clusterReceiver
on one of the installations to avoid cluster-wide metrics duplication. To do this, add the following lines to the configuration of one of the installations:
clusterReceiver:
enabled: false