Docs » SignalFlowと分析 » Splunk Infrastructure Monitoring分析

Splunk Infrastructure Monitoring分析 🔗

Conceptually, a SignalFlow program consists of a several computational blocks, each of which accepts some input, performs some computation (for example, sum, mean, max, and so on) and generates some output. The blocks are connected in a directed graph so that the output of one unit flows as input to other units, resulting in a cascading series of computations that calculates the desired results.

実際には、個々のSignalFlowプログラムは、インフラストラクチャ・モニタリングのチャートの計算バックボーンであり、インフラストラクチャ・モニタリング・アプリケーションでは、相互にリンクされた分析パイプラインのセットとして視覚化されます。

SignalFlowプログラムへの初期入力は、通常、1つまたは複数の時系列のセットです。

ロールアップ・ポリシー 🔗

Each set of time series in a plot line has a common metric type, whether a gauge, counter or cumulative counter. The metric type determines the default visualization rollups that is applied to the time series data. The defaults in each case are chosen to ensure that values displayed are accurate and stable across different chart resolutions.

Take as an example a gauge that is reporting every 30 seconds. In a chart with a time range of 5 minutes, each reported value can be shown on the chart, as there is typically enough screen real estate to show the data at its native resolution, i.e. 10 data points sent in during a 5‑minute period. If the time range is changed to 1 week, however, Infrastructure Monitoring automatically switches to a coarser chart resolution to match.

In this case, Infrastructure Monitoring uses the Average rollup to calculate the average value of the gauge, over each time interval at the coarser chart resolution. With one week’s worth of data, each visible data point is the average of the values sent during the chosen interval. Infrastructure Monitoring then plots those average values, instead of, say, a sampled value. In general, this provides a more accurate representation of the data, but it also has the side effect of averaging out peaks and valleys, which may not be desirable, depending on the actual metric.

注釈

サンプリングされた値を見たい場合は、最新 のロールアップを選択し、ピークと谷を見たい場合は、それぞれ 最大 または 最小 のロールアップを選択することができます。

For a counter or cumulative counter, the chosen rollup affects not only the accuracy, but more generally how the chart behaves as you change the time range. For example, you have a counter, sent as a high-resolution metric, that tells you how many responses a server handled per 1‑second interval. If you use a rollup of Rate/sec rather than the default Sum rollup, then in a chart with a time range small enough to show the time series at its native resolution, values are reported as follows:

  • For a counter, each reported Rate/sec value is shown normalized by the interval, for example, number of responses during each 1‑second interval, divided by 1 (for data coming in every second), number of responses during each 5‑second interval, divided by 5 (for data coming in every 5 seconds) etc.

  • 累積カウンターの場合、デフォルトのロールアップは デルタ です。したがって、報告される各 Rate/sec 値は、インターバルで正規化された最後のデータポイントからのデルタであり、1で割った値(1秒ごとに入ってくるデータの場合)、5で割った値(5秒ごとに入ってくるデータの場合)などです。

次に、プロットする各データポイントが例えば4分間隔を表すように時間範囲を変更すると、値は以下のように報告されます:

  • カウンターの場合、各データポイントは、その4分間のインターバル中のすべての回答の合計を240(そのインターバルの秒数)で割ったものです。

  • 累積カウンターの場合、各データポイントは、インターバル中のデルタ・ロールアップ(デルタ・ロールアップは連続するデータポイント間の差)の合計を240(インターバルの秒数)で割ったものです。

おそらくこれは、平均 ゲージのロールアップと同じような影響を与えます。データの正確な表現を提供し、折れ線グラフやエリア・チャートを通常使用する方法と同じように視覚化されます。

In contrast, if you choose a different rollup, such as Sum, then the behavior of the chart changes with different chart resolutions. In a chart with a time range small enough to show the time series at its native resolution, each reported value is same as in the rate per second case, as the sum rollup occurs over a 1‑second interval. In a chart with a four-minute interval, however, the values shown are the sum of all values during the 240 seconds. This is likely to generate a value that is significantly higher than the normalized rate per second rollup, and depending on the nature of your metric, it may be what you are looking for.

ロールアップ、リゾリューション、分析のインタラクションの詳細については、チャートのデータ解像度とロールアップ を参照してください。

SignalFlowのメタデータの扱い方 🔗

SignalFlow computations often involve both data and corresponding metadata - dimensions, properties, or tags. For example, when a mean is computed across CPU utilization metrics received from server instances spread out across multiple regions or availability zones, you can group them by the regions or availability zones, so that you can discern whether one is running hotter than the next at the aggregate level.

To ensure that calculations throughout a SignalFlow program are able to make use of this metadata, time series data is ingested into a SignalFlow computation with its corresponding metadata. Subsequent computations on data include corresponding computations on metadata so that the result includes both data and metadata components, enabling further downstream processing and re-aggregations, as necessary.

Computations that output a single summary result from a collection of time series, such as a sum or mean, use only the metadata that shares the same name and values across the collection. In contrast, computations that select values from a collection, such as maximum, minimum and so on, use the corresponding metadata of the selected values as is.

SignalFlow の計算の詳細については、SignalFlowを使用した受信データの分析 を参照してください。

集約と変換 🔗

An analytic computation is a mathematical function that is applied to a collection of data points. For example, a mean is computed over a collection of data points by dividing the sum of the collection by the number of data points in the collection. In the context of time series calculations, an analytic computation is applied either as an aggregation or a transformation. For more information, see データの集約と変換.

このページは 2024年06月14日 に最終更新されました。